
 

 
 

 
Abstract: 
Contemporary buildings are expected to meet an extensive set of requirements. They must 
be conceived, constructed, and operated in a manner that is functionally adequate, 
environmentally sustainable, occupationally desirable, and economically feasible. Moreover, 
buildings must increasingly accommodate different user groups, a varied set of activities, and 
multiple indoor environmental control systems. Accordingly, the optimization of the overall 
performance of buildings represents a non-trivial task and requires effective and well-tuned 
technologies. Specifically, the configuration and calibration of environmental control systems 
in buildings has been shown to be difficult and prone to failures, particularly in large-scale 
facilities. This paper explores the notion of sentient building technologies and its potential to 
address certain aspects of indoor environmental control problems in buildings. Specifically, it 
describes an approach to the integration of simulation-based predictive models in the 
decision-making repertoire of building control systems. 
 

1. Motivation and Background 
Modern buildings are expected to provide optimal indoor conditions for the 
organizations and people they house. Moreover, they must achieve this in 
an environmentally sensitive and economically feasible manner. A large 
number of buildings do not meet such expectations. In fact, the configuration 
and tuning of the environmental control systems has been repeatedly shown 
to be a difficult task, particularly in large buildings. A number of reasons may 
be listed for this circumstance. Both building fabric and building systems can 
suffer from design flaws due to deficiencies in integration. Often, there is a 
lack of coordination between the architectural design of building mass, 
envelope, topology, and orientation on one side and the choice and 
configuration of building systems on the other side. Environmental and 
energy systems rarely represent the main concern of the primary designers 
of buildings. As a result, the detailed design of environmental systems for 
indoor climate control is frequently referred to experts at later stages of 
design. Asides from shortcomings in the design and engineering process, 
there are further problems inherent in the nature of buildings as artifacts. 
Buildings are complex, in the sense that they must encompass many 
domains, systems, functions, conditions, and activities. Ideally, multiple 
systems for heating, cooling, ventilation, air-conditioning, lighting, shading, 

ITU   A|Z 
VOL: 3,  NO: 1/2,  24-36,  2006-1/2 

 
The technology of sentient buildings 
 
 
Ardeshir  MAHDAVI 
Vienna University of Technology Department of Building Physics and Building Ecology, 
Vienna, Austria 
 
 
Invited Paper 



The technology of sentient buildings  25 

and security should be integrated and operated in a harmonious fashion. 
This should be done under changing outdoor (weather) and indoor 
(occupancy, activity patterns) conditions. Moreover, the design solution for 
these requirements is typically unique for each new building: every new 
building instance involves a set of new and unique features (location, site, 
climate, functions, etc.) requiring customized solutions. A configuration of 
system solutions that is appropriate for one building does not necessarily 
work for another one. 
 
Given this context, it is not surprising that the optimization of the state of 
buildings as complex systems represents a non-trivial challenge. Technically 
speaking, there is not a simple mapping function from the desired state 
space of performance conditions in a building back to the state space of 
multiple building control devices. Classical control rules and algorithms 
(thermostatic routines, PID functions) do work properly, but only if the control 
situation is not overtly complex. Otherwise, much postconstruction fine-
tuning is required, resulting in considerable time and cost expenditures. This 
may explain the rather suboptimal performance of environmental systems in 
many recently completed highrise buildings, even after protracted systems 
calibration processes. 
 
As in some other areas in which the system complexity is a defining 
attribute, alternatives to classical (explicit) control methods have been 
considered also in building industry. Examples are the application of 
distributed and agent-based control approaches, neural networks and 
machine learning, and selfadaptive algorithms (see, for example, Guillemin 
and Morel 2002, Mozer et al. 1997). The specific approach presented in this 
paper aims at the embodiment of sensor-supported self-representational 
features in building control logic and the simulation-based use of such 
representation toward anticipatory evaluation of the consequences of 
alternative control options. The term "sentient buildings" has been coined to 
refer to this capacity of self-representation and self-organization (Mahdavi 
2004a). 
 
2. Elements of Building Sentience 
 
2.1. Overview 
A sentient building (see Figure 1) is defined here as one that: 
 
a- possess a "self-representation", i.e. a representation of its own context, 

structure, components, systems, and occupancy; 
b- can dynamically update (actualize) this self-representation via a network 

of sensors and supporting computational applications (data-mining, 
geometric reasoning, etc.); 

c- can use this continuously updated self-representation toward regulatory 
operations (e.g. indoor environmental control, facility management). 

 
Specifically, the executive control application of a sentient building can use 
simulation to regularly predict the future state of the building as a 
consequence of alternative control actions. The results of such simulations 
may be compared on the basis of applicable objective functions to 
dynamically identify the preferable state of environmental control devices of 
a building. 
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Figure 1: The "sentient building" scheme 
 
2.2. Self representation 
Much work has been done to develop standard representations (product 
models) of buildings, involving both semantics (material and component 
properties) and geometry (IAI 2005, Mahdavi et al. 2002). In principle, a 
sentient building can make use of schemata encapsulated in such common 
models as the basis of its representational core. However, next to the 
representation of the rather static constitutive ingredients of a buildings as 
considered in common product models, processes (e.g. dynamic changes in 
the occupancy and in the state of building systems) must be captured in the 
underlying selfrepresentation of a sentient building (Mahdavi 2004a). 
Moreover, to be scalable, such combined product-process models should be 
generated based on transparent and ideally automated computational 
routines (Mahdavi 2004b). 
 
2.3. Updating the representation 
To support the operational processes in sentient buildings, the self-
representation needs to be continuously, dynamically, and autonomously 
updated. This requires a comprehensive sensory infrastructure, which must 
provide the representation with a real-time flow of information with respect to 
the changes in the outdoor conditions, indoor climate, occupancy, user 
actions, device states, room configurations, and object locations (Mahdavi 
2004a).  
 
2.4. Using the representation 
A continuously updated valid and comprehensive representation can 
effectively support management, organizational, and control operations in a 
sentient building. Specifically, such a representation can be used to predict 
(via building simulation) the future state of a building's indoor climate as a 
consequence of various control options. Thus, alternative control actions 
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may be regularly evaluated to identify the most desirable one given an 
applicable and up-to-date set of objective functions (Mahdavi 2001). 
 
3. A demonstrative implementation 
 
3.1. The basic scenario 
To test the sentient buildings idea presented in the previous section, a 
demonstrative implementation of a simulation-supported building systems 
control scheme was carried out. Thereby, the following scenario was 
considered. In a typical double-occupancy office space (see Figures 2 and 
3), lighting control systems (electrical lighting, daylight control via window 
shades) are to be operated based on a simulation-assisted methodology. 
The objective of the control task is to: i) maintain the illuminance levels at the 
two workstations in this office within a user-specified range; ii) minimize the 
electrical energy consumption for the operation of luminaires. The control 
decision making process is as follows. At regular time intervals, a number of 
alternatives for the control device states (i.e. the position of shades and the 
dimming level of the luminaires) are considered. Using a light simulation 
application, these alternative states are simulated for the subsequent time 
interval. The results (illuminance levels at the two reference points in the 
offices as well as the electrical energy use for luminaires) are evaluated to 
identify the configuration of device states that yields the most desirable 
attribute for the performance parameters considered. This configuration of 
the device states thus identified, can then be realized, either automatically 
(via instructions to the device actuator), or by the user. 
 

   
 
Figure 2: Schematic illustration of 
the office space (B: blinds; L1, L2: 
luminaires; E1, E2: illuminance 
sensors) 

Figure 3: Photograph of the office space used as the 
implementation test bed 
 

 
3.2. Product and process models 
The product model for the constitutive elements of the space and the 
process elements for the control task in this case are depicted in Figures 4 
and 5 respectively. As it has been demonstrated before (cp. Mahdavi 
2004b), a process elements representation such as the one shown in Figure 
5 can be generated in an automated fashion once i) the control devices (for 
heating, cooling, shading, ventilation, etc.) are specified; ii) the sensors 
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representing the relevant system performance indicators (room temperature, 
task illuminance, etc.) are specified; and iii) the causal connections between 
devices and sensors are established. Note that Figure 5 represents merely 
the general hierarchy of the control system ingredients, depicting the 
relationship between sensors, devices, and decision-making nodes (device 
controllers and meta-controllers). Device controllers (DCs) represent control 
logic that can be implemented at the level of individual devices (L1, L2, and B 
in this case). As multiple devices may affect the same sensor (for example 
electrical light and daylight can contribute to the illuminance level at a certain 
point in a room), their operation must be coordinated. Such coordinated 
decision making can be implemented within the so-called meta-controller 
nodes (M in this case). 
 

 
Figure 4: Product model scheme for the office space used as the 
implementation test bed 
 

 
Figure 5: Control system syntax for the test bed (E1, E2: illuminance 
sensors; B: device-controller for shades, L1 and L2: device-controllers for 
Luminaires; C: Meta-controller) 
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3.3. Updating the model 
 
3.3.1. Overview 
As argued before, to achieve the sentient buildings functionality, it is 
necessary that the building's selfrepresentation is autonomously updated. 
Otherwise, the overhead associated with manual actualization of model state 
would be infeasible. As such, a comprehensive building representation must 
contain a wide range of information including outdoor conditions, indoor 
climate, state space of control devices, location of moveable room objects, 
physical properties of room elements, occupancy, user preferences and 
control actions, utility rates, etc. To continuously collect this information, a 
manifold sensing infrastructure would be required. As the overall concept for 
the configuration of such a sensory infrastructure has been discussed 
elsewhere (see, for example, Mahdavi 2004a), only a few illustrative 
instances of automated model self-actualization are discussed below. 
Section 3.3.2. deals with automated real-time scanning of sky luminance 
distribution, as this information is required for the dependable simulation of 
daylight distribution inside the building (Spasojevic and Mahdavi 2005). 
Section 3.3.3. briefly describes a location-sensing solution to identify 
changes in the configuration of rooms (e.g. mobile partition walls) and 
positions of objects (such as furniture elements) in rooms. 
 
3.3.2. Updating the context 
Reliable prediction of daylight availability in indoor environments via 
computational simulation requires reasonably detailed and accurate sky 
luminance models. As past research has demonstrated (Roy et al. 1998), 
relatively low-cost sky luminance mapping via digital imaging could provide 
an efficient means to collect information on sky luminance distribution 
patterns on a more pervasive basis. To examine the reliability of this 
approach, a digital camera, equipped with a fisheye converter and pointing 
toward the sky zenith, was placed on the roof of a building that houses the 
implementation test bed. Sky images were collected under varying sky 
conditions. Simultaneously, the luminance due to sky was measured using a 
photometric sky monitoring device. Additionally, the horizontal illuminance 
due to the entire sky dome was measured using a precision illuminance 
meter. To further calibrate the process, a correction factor was applied to the 
digitally gained luminance values. Figure 6 provides an example of sky 
luminance data gained from digital images. This correction factor was 
derived as the ratio of the optically measured horizontal illuminance due to 
the entire sky dome to the horizontal illuminance of the sky as derived from 
digital images. Figure 7 shows the relationship between photometrically 
obtained (vertical axis) and the corrected camera-based luminance values 
(horizontal axis). The correlation coefficient (r2) of the corresponding linear 
regression amounts to 0.83. 
 
3.3.3. Updating the room model 
Location sensing (tracking the position and orientation of objects in rooms) 
can be applied to construct and continuously update models of buildings as 
dynamic environments. As buildings and rooms are not static entities but 
change in multiple ways over time, the ability to automatically track such 
changes is necessary for the viability of sentient building models and the 
requirements of simulation-based building control applications. The location 
sensing system deployed for the present implementation uses a vision-
based technology and scans scenes for distinctive optical markers. It 
exploits a combination of cameras and visual markers (low-cost black-and-
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white tags). Using optimized image processing methods, it obtains in real-
time the identification and location (both position and orientation data) of an 
object to which the visual tag is attached (Icoglu and Mahdavi 2004). The 
overall system architecture is schematically depicted in Figure 8. 
 

 
Figure 6: Example of sky luminance distribution (left) derived from digital photography (right) 
 

 
Figure 7: Photometrically obtained versus camera-based luminance values 
 
Network cameras (netcams) are used as visual sensors, augmented with 
pan-tilt units that increase the range of these devices. Netcams are 
specifically designed for built environments and make use of the existing 
network installation. The system is designed as a distributed framework, 
whereby hardware and software components are tied together via Internet. 
Netcams and pan-tilts constitute the hardware part of the system whereas 
Processing Units (PUs) form the distributed software components. PUs are 
programs that extract the context information by using optimized image 
processing and computer vision methods. They are the consumers of the 
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hardware resources. PUs, implemented on different computers scattered 
across the facility, convey the location data to the central Application Server 
where incoming pieces of information are combined, stored in the system 
database, and displayed to the operator. An additional function of the 
Application Server is to control the status of the components and 
dynamically assign active netcams to active PUs in such a manner that the 
workload is constantly balanced within the system. This arrangement 
provides a self-organizing capability and minimizes operator overhead. The 
resulting flexible and adaptive structure offers a suitable response to the 
requirements of control applications for sentient buildings. 
 

 
Figure 8: Schematic illustration of the overall structure of a location sensing 
system for sentient buildings (C: network camera; CPT network pan-tilt 
camera unit; T: optical tag; PU processing unit) 
 
The hardware-software configuration described above was selected given 
the current state of technology in the domain of optically-based location 
sensing. It enabled us to provide a proof of concept for the proposed 
location-sensing strategy for sentient building applications. However, for a 
scalable and wide-spread use in actual buildings, efforts are needed to make 
the system more compact and more cost-effective. Toward this end, the 
author has proposed the application of compact low-cost network cameras 
equipped with fish-eyes. This would allow us to replace the rather large and 
expensive pan-tilt cameral units with smaller cameras, while maintaining the 
benefit of wide angles needed to efficiently capture indoor spaces. This 
hardware solution will be accompanied by the development of geometric 
algorithms to translate fish-eye-based spherical projections into orthogonal 
projections typical for architectural spaces. The methods already developed 
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for tag recognition (together with the determination of position and 
orientation) can be thus incorporated within this new framework. Small 
network cameras equipped with fisheyes cannot only provide information 
toward location sensing, but also provide information on luminance 
distribution in interior spaces. Using an analogous strategy for sky scanning 
(cp. section 3.3.2.), such cameras may be supplemented with an illuminance 
meter, thus facilitating the photometric calibration of photographic images 
toward the determination of luminance distribution across room surfaces as 
well as changes in room surface reflectance coefficients. Such a system 
should be also capable of detecting occupants' movements. 
 
3.4. Control state space 
The control state space of a building encompasses, by definition, the sum of 
all possible (and practically relevant) positions of the building's control 
devices. A control state space for a building's systems has as many 
dimensions as there are individually controllable devices. Each dimension 
holds the range of values that the position of a device may have. In the most 
simple case, the dimension of a device may be construed as 
accommodating just two values, namely on and off. The control state space 
of a building may thus include a theoretically infinite number of members, 
particularly in case of continuously variable controller positions. To make this 
space manageable, first a discretization of device positions is required. In 
the present case, the shading system states (for the automated daylight 
control scenario) were discretized into seven distinct positions (see Figure 
9). As to the control state space of the electrical lighting in the test bed, 10 
discrete dimming positions were assumed for each luminaire (see Table 1). 
 

 
Figure 9: Control state space of the shading device in the test bed 
 
Dimming level  1 2 3 4 5 6 7 8 9 10 
Power output [%] 0 20 30 40 50 60 70 80 90 100 

Table 1: Control state space of the electrical lighting devices in the test bed 
 
3.5. Control Objectives 
For the purposes of the present illustration, the objective of the control task 
was to maximize the value of a weighted utility function comprising both the 
illuminance levels at the two workstations and the electrical energy 
consumption. Equation 1 provides an example for such a utility function: 
 
UF = wE1 . PE1 + wE2 . PE2 + wL . PL  (1) 
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In this equation PE1, PE2, and PL stand for the preferences for illuminance 
levels (E1 and E2) and electrical energy consumption. The corresponding 
weights are represented by wE1, wE2, and wL. 
 
Figures 10 and 11 depict illustrative preference functions as adapted for the 
implementation. Note that the users can change, at any time, their 
preference settings for illuminance levels. Likewise, the preference function 
for electrical energy use as well as the relative weighting of illuminance 
versus energy consumption can be modified dynamically. Last but not least, 
the user can also override system's control instructions and control shades 
and luminaires manually. 

 
3.5. Control process 
At time interval ti, the system moves to 
identify the most desirable control state 
at time ti+1. As combinations of 
possible device positions cannot be 
evaluated exhaustively, a subset of 
candidate options must be identified. 
There are different ways to reduce the 
size of the candidate control state 
space. In the present case, a 
combination of "greedy search" and 
"stochastic jumps" is applied. 
Specifically, at each time interval, each 
device (i.e. L1, L2, B) submits to the 
control application C a list of candidate 
device states (see Figure 5). In the 
present case, each device submits four 
alternative options. These options are: 
the device's current position, the two 
neighboring device states, and a fourth 
– randomly selected – option from the 
rest of the device's control state space. 
The control application considers the 
resulting overall option space involving 
a maximum of 64 combined options. To 
predict the illuminance levels at E1 and 
E2 due to these options, the lighting 
simulation application LUMINA is used 
(Pal and Mahdavi 1999). The 
simulation application is provided with 
the actualized room and sky luminance 
distribution models. Based on this 
information and the associated 
electrical energy consumption data, the 
utility function values are derived using 
equation 1. Thus, the control state with 
the maximum utility function can be 
identified at each time step. 

 
3.6. Illustrative results 
To illustrate the control process, the operation of the system in the course of 
a day was documented. The external global horizontal illuminance level for 
this day is shown in Figure 12. The following weight assumptions for Eq. 1 

 
 

Figure 10: An illustrative preference function for 
task illuminance 

 
 

 
Figure 11: An illustrative preference function for 
electrical power for luminaires 
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were applied: wE1 = wE2 = 0.4; wL = 0.2. Figures 13 and 14 show the 
recommendations of the control application for dimming positions of the two 
luminaires and the blind position. Figures 15 to 17 illustrate the resulting 
illuminance levels at E1 and E2, the electrical energy power requirement, and 
the utility function. 
 

   
Figure 12: Measured external global 
horizontal illuminance for the test day 

Figure 13: Control system 
recommendations for the luminaire dimming 
positions 

  

    
Figure 14: Control system recommendations 
for the blind position (cp. Figure 9) 

Figure 15: Resulting illuminance levels for 
E1 and E2 

  

    
Figure 16: Resulting power values  Figure 17: Resulting utility function values 

 
4. Conclusion 
The concept and a prototypical implementation of a simulation-assisted 
systems control in buildings were presented, using a lighting control 
scenario. It was demonstrated, how the overall framework of sentient 
building technologies allows, in principle, to incorporate simulation-based 
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predictive models as an integral component of the control logic repertoire for 
building systems. In order to develop the proposed concepts and techniques 
into technically mature and commercially viable solutions, substantial 
additional research and implementation work is needed. Specifically, 
ongoing research aims to address a number of open issues: 
 
i. The implementation presented in this paper must be considerably 

extended to cover the integration of multiple building systems 
(heating, cooling, ventilation, lighting); 

ii. The scalability of the system and its self-updating capability must be 
improved to accommodate larger building objects with multiple 
sections, floors, rooms, workstations, and associated control devices; 

iii. The location-sensing system prototype needs to be made lighter, 
more cost-effective, and more robust. Moreover, it must be 
augmented to capture occupancy movements and changes in 
reflective properties of room surfaces and objects. Specifically, the 
deployment of compact network cameras equipped with fish-eyes will 
be explored to provide a costeffective and scalable solution not only 
for location-sensing, but also for the detection of luminance 
distribution and reflectance changes (across interior room surfaces) 
as well as occupants' movements; 

iv. Efficient geometric reasoning algorithms must be developed to 
reconstruct building geometry models autonomously based on sensor-
driven input (Suter et al. 2005), for example after modification and 
renovation activities; 

v. To deal with the computational (simulation) loads due to the growth in 
size of the control state space in large buildings, more efficient 
methods, algorithms, and filters are needed (Mahdavi 2004a); 

vi. Finally, a comprehensive sensory infrastructure that continuously 
updates a building's selfrepresentation must be secured against 
potential misuse. Real or imagined potential for such misuse can 
easily lead the occupants of a sentient building to perceive its 
informational infrastructure as intrusive and alarming. The associated 
social and psychological implications of this possibility must be 
studied carefully to arrive at admissible and acceptable solutions for 
sentient building technologies. 
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