

Abstract:
Most evolutionary computation (EC) applications in design fields either assume simplified, static,
performance-oriented procedures for design or focus on well-defined sub-problems, to be able
to impose problem-solving and optimization schemes on design tasks, which render known EC
techniques directly applicable. However, in most design situations, well-defined and static
problems are not given, but must be constructed from messy situations, and the definition of a
problem takes place during the solution process. Thus, evolutionary design requires contextual
and dynamic problem definition and evaluation procedures, which has not yet been realized
through EC. This study sets out for a critical reappraisal of EC for design, and proposes a
conceptual framework as a research tool for the exploration of dynamic evolutionary design.
After a critical review of EC in design, the article discusses its claims with reference to design
theory, outlines the framework, and examines dynamic evolutionary strategies and required
intelligent technologies. Although tackling a practical task, or solving the problem of dynamic
evolution are not aimed in this study, an experimental application based on the framework will
be presented in detail, to exemplify a mapping between the rather abstract concepts of the
framework and the operators of a specific evolutionary algorithm.

Keywords: Evolutionary design, AI in design, design automation, evolutionary computation.

1. Introduction
Evolutionary computation (EC) denotes a family of techniques within
computer science, which are inspired by the processes of biological
evolution. EC typically exploits mechanisms like variation, reproduction, and
selection and is often used for problem-solving and optimization, especially
when the problems do not lend themselves to easily applicable algorithmic
procedures. There are many different variants of evolutionary algorithms
(EAs), which are united by a common underlying idea: “given a population of
individuals, the environmental pressure causes natural selection (survival of
the fittest), which causes a rise in the fitness of the population” (Eiben and
Smith, 2003, p. 15). The most dominant application area of EC has been
optimization problems (de Jong, 206, p. 23), where EC has been considered

ITU A|Z
VOL: 11, NO:1 138-157, 2014-1

Design games: A conceptual framework for dynamic
evolutionary design

N. Onur SÖNMEZ*, Arzu ERDEM**
*Istanbul Technical University, Faculty of Architecture, Istanbul, TURKEY & Delft University of
Technology, Faculty of Architecture and the Built Environment, Delft, the NETHERLANDS
**Istanbul Technical University, Faculty of Architecture, Istanbul, TURKEY

Received: May 2012 Final Acceptance: March 2014

Design games: A conceptual framework for dynamic evolutionary design 139

as a problem-solving technique, which tries to approach optimal values
closer and closer through the migration of a species of solution candidates
within a complex search space (de Jong, 2006, p. 71). The use of EC within
design fields has also mostly followed problem-solving and optimization
paths. However, such approaches, which are suitable for engineering
problems, are not sufficient for understanding design situations or carrying
out design tasks. Through a critical review of existing studies and with
reference to design theory, we will claim below that there is a need for a
reappraisal of EC in design and will state the rationale for the proposal of a
new framework that resides on a general level.

There has been a wide range of attempts to utilize EC for design and arts.
For instance, EC has been utilized, mostly experimentally, for product design
(Liu and Tang, 2006; Ang et al., 2006) and for generating two-dimensional
forms and graphic layouts (Geigel and Loui, 2001; Ross, Ralph, and Zong,
2006; da Silva Garza, Lores, and Zamora, 2008). EC offers mostly generic
mechanisms in the form of specific EAs, and problem definition and
evaluation approaches are the core mechanisms that enable the adaptation
of an EA to a specific task. In the above studies, EC was utilized for parts of
the overall design task and only after the strict definition of suitable
problems, which is congruent with the optimization model.

EC has been very popular in generative art circles, at least since, in his book
"The Blind Watchmaker" Richard Dawkins described how evolution could be
used to evolve shapes (Dawkins, 1996, pp. 43-74; Lewis, 2008). Following
Dawkins, and Genetic Programming, Karl Sims and William Latham

1
evolved

two-dimensional abstract illustrations in the early 1990s (Lewis, 2008).
These studies were using tree-based mathematical expressions for
genotype representation, which has been adopted in most subsequent
evolutionary art. Most of these studies depend upon the same, pre-given
way of painting digital canvasses, i.e., a fixed problem definition.
Nevertheless, the often-assumed interactive evaluation approach removes
the need for static fitness definitions and gives such studies a proportion of
dynamism. However, interactive evolution is tiresome and does not fit well
with the aims towards automation. Karl Sims has also experimented with
artificial life

2
, which subsequently became a research area on its own (Lewis,

2008). Artificial life may assume a co-adaptation approach much like the
aimless, open-ended natural evolution. This potentially removes fixed
problem definitions and brings EC outside the bounds of problem-solving
approaches, yet it is not straightforward to utilize the adaptation model for
design situations, which involve goal directed tasks.

John Frazer (1995) has been a precursor of the usage of EC in architecture.
John Gero's research group studied a diverse array of tasks through EC.
They experimented with space layout topologies, combination of shape
grammars with evolutionary approaches, and evolving linear plan units as
design genes within a two-phased hierarchical evolution (Gero, Louis, and
Kundu, 1994; Gero, Schnier, and Thorsten, 1995; Damski and Gero, 1997;
Gero and Kazakov, 1998; Jo and Gero, 1998). Rosenman (1997) studied
interactive evolution for floor plan generation. Rosenman and Saunders
(2003) experimented with a self-regulatory hierarchical co-evolution model
for designing. These studies operated within highly constrained, simplified,
and isolated sub-domains of architecture and mostly followed optimization
approaches using just a few objectives, such as circulation costs calculated
through pre-given adjacency matrices. Given the direct borrowing of EC from

1
Artist's website

available at [online]:
<http://www.doc.gold.ac

.uk/~mas01whl/>
(Accessed: February

2014).

2 For artificial creatures
evolved by Sims

[online]:
<http://archive.org/detail
s/sims_evolved_virtual_

creatures_1994>
(Accessed: May, 2013).

140 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

applied engineering fields, which imposed the problem-solving and
optimization approaches, it is not surprising that the more developed
applications appeared within rather well-defined sub-problems of
architecture. A series of experimentations has been carried out by Caldas,
Norford, and Rocha (Caldas and Rocha 2001; Caldas and Norford, 2002,
2003; Caldas, 2003, 2005, 2006, 2008), which uses EC for the aim of
integral building envelope design and performance optimization. Again, with
a performance oriented design approach, Turrin, Buelow, and Stouffs
developed an application to combine parametric modeling and EC (Turrin et
al., 2011; Turrin, von Buelow, and Stouffs, 2011). These studies went on to
assume a simplified, performance-oriented procedure for design, which
rendered known EC techniques directly applicable.

Using EC for the optimization phases of design is rather straightforward;
however, what most of the above listed studies do is to implicitly carry out a
reformulation of design to make it compatible with the problem-solving
model. This did not seem problematical to most researchers, because the
problem-solving paradigm, which, sought out to understand design as a
rational problem-solving process in order to enable the handling of design
tasks through search and optimization methods (Simon, 1996), has been a
dominant influence shaping prescriptive and descriptive design
methodology, and a considerable portion of the work done in design
methodology has followed it in its assumptions, view of science, goals, and
methods (Dorst and Dijkhuis, 1995). In the problem-solving paradigm, the
design process can be said to comprise three major tasks, which echoes the
tripartite phase models of design process (Kalay, 1992): 1) Defining a set of
desired conditions that comprise the objectives to be achieved, i.e., analysis
(posing goals, objectives, performance criteria, constraints, etc.), 2)
Specifying actions that will achieve the desired objectives, i.e., synthesis /
generation (search operators, modifiers, etc.), and 3) Predicting and
evaluating the effects of the specified actions to verify that they are
consistent with each other and they achieve the desired objectives, i.e.,
evaluation (simulation, testing, etc.).

Indeed, the 'pose-search-evaluate-choose' process can be recognized in
real design processes, although in a rather chaotic manner (Lawson, 2005,
p. 49). However, it would not be wise to think that all design activity can be
captured within the problem-solving model (Lawson, 2005, p. 31). In contrast
to well-defined (alternatively: well-formulated, well-structured) problems, the
problems that the designers tackle often exhibit characteristics that are
referred to as ill-defined, ill-structured (Simon, 1973), open-ended and even
as wicked (Rittel and Webber, 1973). In most design situations, well-defined
problems are not given but must be constructed from messy problematic
situations (Schön, 1983, p. 47), and the primary task is not the optimization
procedure, but the definition of the problem together with the solutions.

Every design situation involves both open and closed types of problems.
These two types of problems require different mental strategies (Dorst,
2006, p. 15, 16, 35; Cross, 2006, p. 77). The intensity and essentiality of the
open problems in a design situation would render its character as open or
closed. Closed design problems are more like puzzles. Solutions are tried
out, and the feedback from evaluating the solutions is immediate and clear.
On the other hand, open problems require the designer to play with concepts
and ideas through a wide range of possibilities before settling on a firm
direction. Ideas are proposed, critically inspected, and continuously

Design games: A conceptual framework for dynamic evolutionary design 141

reconsidered. This is done repeatedly, making gradual improvements as the
designer learns more about the problem. Therefore, design involves finding
appropriate problems, as well as solving them, and includes substantial
activity in problem structuring and formulating, rather than merely accepting
the problem as given. A cognitive neuroimaging experiment by Alexiou,
Zamenopoulos, and Johnson (2009) supports the idea that these two types
of problems, i.e., open / ill-defined and closed / well-defined types, which
were equated to design and problem-solving respectively, require different
mental strategies.

Design often begins without any clear statement of the problem as a whole.
Some general objectives may exist, but there is rarely an unambiguous way
of knowing how well one is doing as one proceeds. Even more confusingly, it
might not be possible to arrive at an overall assessment to compare relative
values of various solutions. Design solutions are not certainly right or wrong
and there are no knowable optima (Dorst and Dijkhuis, 1995; Lawson, 2004,
p. 20). For these reasons, at least until its detailing stages, a design process
cannot be identical to optimization. The optimization approach assumes that
the essential needs of a circumstance can be listed and can be expressed in
a measurable form before the solution process starts. For design problems,
even if this was possible, the quantities of criteria, constraints, or needs
could easily reach huge numbers. Moreover, these requirements mostly
reside on incommensurate levels, so that comparing them is also a problem
itself. After all, designers are rarely completely sure of these needs, let alone
being able to formulate them in a measurable form.

Several architects have been interested in EC as a generative tool and
developed specific, 'one-off' design approaches (Chouchoulas, 2003;
Chouchoulas and Day, 2007; Hemberg et al., 2008; Dillenburger et al.,
2009). However, it is not easy to adapt such highly specific approaches to
other design situations, which is important in building generic design tools or
methods. In all the above studies, as well as in the 'one-off' approaches, EC
has been used through static problem definitions, which do not respond well
to the essentially vague, highly contextual, and consequently, highly
dynamic manner of design processes. A second problem arises due to
simplified evaluations, which come nowhere near a real designer's subtlety
in evaluating a solution alternative. Multi-objective evolution is problematic
for tasks that require complicated representations and a high amount of
conflicting objectives, which is mostly the case with design. The only way
forward appears as devising dynamic evolutionary processes, where at any
juncture a limited number of operations and evaluations would be applied.
However, this requires a contextual intelligence capable of appreciating
which operator to use and how, throughout the changing design context.

Therefore, evolutionary design has yet to find the paths that would account
for the dynamic aspects of design, which necessitates an additional layer of
research between design theory and specific and pragmatic applications.
More specifically, there is a requirement for new conceptualizations and
frameworks that target the use of EC within ill-defined situations, such as the
Situated FBS Ontology (Gero and Kannengeisser, 2004, 2007) and
Janssen's framework for evolutionary architectural design (Janssen, 2004,
2006).

We propose the two main requirements of evolutionary design as, 1)
contextual, flexible, and dynamic (on the run) problem definition, and 2)

142 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

more refined, multi-faceted, and again contextual and dynamic evaluation.
The technology required for these aims is yet to be developed or adopted
from other fields. Nevertheless, there are already clues for potential tracks.
Sean Hanna (2005, 2006, 2007) utilized machine-learning techniques to
generate implicit objective functions for usage in evolutionary generation of
floor layouts. Within an on-line monitoring mechanism, such an approach
may enable contextual evaluation and dynamic changes within an
evolutionary system.

In brief, this study attempts at developing an intermediary evolutionary
design framework, which has to be flexible, abstract, and open-ended, not
only because it has to be applied in varying situations and tasks, but also to
remain compatible with potential dynamic evolutionary approaches. The
Design Games Framework resides on a level between how design is
understood and how it is implemented through computational (evolutionary)
means, and aims to be a research tool for the exploration of dynamic
evolutionary design. Although tackling a practical task is not amongst the
aims of this study, the framework will be applied through a toy problem, to
exemplify a possible mapping between the rather abstract concepts of the
framework and the operators of a specific EA. The study does not aim at
solving the problem of dynamic evolution, either. Yet, it will enable us to
indicate what kinds of additional technologies would be required, if
evolutionary design is our target.

2. Design games model and the framework
With their un(der)defined problem areas,
solution procedures, and unexpected products,
design processes often defy anticipation
(Lawson, 2005; Dorst, 2006; Cross, 2006). The
illustration in Figure 1 attempts at capturing
these characteristics of design processes,
particularly the dynamic interleaving and
hierarchies of design actors and actions, while
trying not to neglect the assumptions,
obscurities, and unknowns. The illustration
depicts a design situation with blurry
components and indefinite stages, as a
complex, collaborative process. The elements
in Figure 1 represent fictive events that take
place within a design situation through time.
Areas that pertain to the relatively unified
design processes are delimited by thick dotted
borders. Each of these processes is extended
over a period, occasionally overlapping with
others. Within each distinctive design process,
a series of “design game” areas are located.
These represent the different subtasks within
an overall design process and are drawn by
continuous thin lines. Other elements such as
tools and agents function together to constitute
these games. Each element is a unique
construction, indicated by a unique symbol. It
appears and disappears at a specific period
during the design process in order to carry out an aspect of the process. The
relationships between these elements are transient.

Figure 1. A depiction of design processes
through "design games" (Adapted from
Sönmez and Erdem, 2009).

Design games: A conceptual framework for dynamic evolutionary design 143

Through a series of simplification and specification operations on this
illustration, the Design Games Model (DGM, Figure 2) has been proposed
by Sönmez and Erdem (2009), with rather practical aims. In DGM, design
processes and individual design games are clearly distinguished. There are
a number of distinct tools and agents that are assumed to be reusable
(indicated by letters, t and a). The agents act as carriers for techniques that
would guide the generic reusable tools within specific contexts. The objects
that correspond to the design proposals and intermediary outputs are
represented through trajectories. These outputs may be partial or holistic
solution proposals in many forms (drawings, models, etc.) and are assumed
to be transformed through design games.

Claiming that the DGM is a suitable conceptualization for carrying out
evolutionary design, this paper proposes a general evolutionary design
framework, i.e., the Design Games Framework (DGF, Figure 3), with an aim
to discuss the possibilities for a dynamic evolutionary design approach.

In the DGM, design processes are depicted as combinations of design
games, which in turn are combinations of tools and agents. In the
corresponding evolutionary framework, basic constituents are characters
(agents), tools, games, and objects (partial or whole solution proposals),
which are taken as atomic units. A mapping from the model to the framework
is given in Figure 4. Tools and characters are the basic building blocks within
the DGF. Tools are generic computational operators that may transform a
given state and the characters are specifications that may guide or govern
the usage of the tools. A tool (generic operator) will be transformed into a
determinate operator (design game) only when it is specified through a
character (or agent), within a specific context. This unified functioning of at
least one character and one tool constitutes a design game. This separation
of the tools from how they will be used aims at making dynamic and
contextual definition of evolutionary operations and evaluations possible, at
least in principle, as these evolutionary operations will be conceptualized as
design games. A game itself may be part of other higher-level games and
may include sub-games. For the sake of generality, these definitions reside

Figure 2. The Design Games Model
(DGM) (From Sönmez and Erdem, 2009).

Figure 3. Basic scheme for Design Games
Framework (DGF).

144 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

on an abstract level and no further
definitions will be provided. DGM depicts
a collaborative approach and the DGF
attempts at defining a platform for the
collaboration of an indefinite number of
both human and non-human agents.

Evolutionary approaches frequently
employ human designers within
interactive evaluation processes, which
obviously brings the human back into a
tiresome procedure and therefore
diminishes the value of the partial
automation provided by the evolutionary
approach. An ability to solicit human
designers’ preferences and domain-
specific procedural knowledge in a less
tiresome and effective manner would
increase the value of evolutionary
design approaches. This is one of the
reasons behind the idea of virtual
characters, i.e., capturing the stylistic or
procedural preferences of a human
designer within computational
constructs. Another idea is to develop a
multitude of such definitions, to be used
as a repository of styles.

The aim of the DGF is to devise
dynamic EAs that correspond to
dynamic problem settings, even when
task representations remain static. In
practice, selection of the tools with
respect to the requirements of a specific
context and matching of these with
appropriate characters may only be
possible with a strategical intelligence,
capable of monitoring and evaluating a
represented context and the progression
of an evolutionary process. We will
indicate several evolutionary options for
such an aim. The first option is to evolve
the tools and characters of a system
through a multi-level co-evolutionary
process. In the simple multi-level system
depicted in Figure 5, tools and
characters are being evolved on the first
level, while an evolutionary design
process, which uses combinations of
these tools and characters as operators
(i.e., as games), is taking place on the
second level. This kind of algorithm can be interpreted as a learning system,
which continuously develops itself by learning new tools and characters on
the run. In such a system, the task definition for the design process will
remain static, the evolutionary processes that produce the tools and

Figure 4. A mapping for the corresponding elements
of Design Games Model and Design Games
Framework.

Figure 5. A multi-level co-evolution / learning model
for DGF.

Figure 6. Decomposition through productions.

Design games: A conceptual framework for dynamic evolutionary design 145

characters will have to become adaptive through constant feedback, and the
main evolutionary process will be in constant change, which would render
the evolutionary system partially dynamic (Figure 5). Note that what makes
the main EA dynamic is the constant redefinition of its operators.

The second option for dynamism is to
decompose a design process into separate
productions and to match each of the
productions to a specific EA (Figure 6). In the
previous option, the EAs were operating
simultaneously as a single dynamic system. In
this second option, each of the static EAs
operate in isolation, to be related with the others
only through their inputs and outputs. In other
words, different evolutionary processes may be
combined within a single workflow, so that the
output of one may become an input for another.
This approach is simply exemplified in the
application that will be presented at the end of
this paper, where the stamps developed during
early evolutionary trials are used as tools during
the latter stages of a pattern generation task. A
parallel strategy would be to develop different
constituents of a product, such as parts of a
chair or a table separately, to be combined
later. There may be an infinite variety of how
separate evolutionary processes could be
interacted, which generates a potential, not for
dynamic EAs, but, on a higher level, for
dynamic and complicated contextual

reorganizations of a series of ready-made static EAs.

A more integrated hierarchical strategy is self-adaptive evolution (Eiben and
Smith, 2003), where parallel evolutions are brought together into one integral
evolution (Figure 7). In a simple case, the parameters (characters in DGF)
that govern operators are evolved together with the products. There are
several levels where adaptivity can be implemented. First, adaptivity may
concern the whole process and use feedback from the health of the process,
which is, however, not straightforward to determine. Second, to each
candidate that is being evolved, its own operator parameters can be
assigned. Third, each component of each individual may be assigned its
own parameters. Therefore, it can be claimed that, in adaptive evolution
dynamic characters are assigned to each process, each candidate, or each
component. In the last two cases, the feedback procedure is implicit. The
underlying idea is, the better the individual produced, the better the
operators should have been that have created it. In these variants, the
process operators will stay fixed, however, the reproduction operators
(crossover and mutation) can be co-evolved together with the products in an
effective manner. An example application in graphic arrangement generation
can be examined in Sönmez, Erdem, and Sarıyıldız (2010).

3. A mapping from the elements of DGF to evolutionary operators
To demonstrate the applicability of the DGF, it should be shown that the
conceptual elements of the DGF could be mapped to basic evolutionary

Figure 7. Self-adaptive evolution.

146 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

operators. The following mapping and evolutionary application will not be a
demonstration of the applicability of the dynamism of the DGF, because
such a demonstration requires, in addition to the above mentioned
evolutionary strategies, further artificial intelligence techniques to carry out
contextual and dynamic evaluation that demand separate studies.

There are several core operations in an EA,
such as initiation, genotype-phenotype
mapping, evaluation, mutation, and selection.
For the application, to each of these
operations, specific tools and characters will
be assigned, so that each operator will be
conceptualized as a design game, i.e.,
operators of an EA will be constituted as
design games. Figure 8 illustrates the types
of example characters and tools, and how
evolutionary operators will be constituted
from these as design games.

In DGF, each character type may involve
sub-types, such as different characters to
guide a specific operation. Two basic types of
characters are given in Figure 8. The
executor characters define how the
evolutionary operations will be carried out,
while the evaluator characters guide the
evaluation tasks. There may be a series of
executor and evaluator characters, which will
constitute alternatives for each operator.
Likewise, each type of evaluation may be
carried out by a separate character. Each
operator within an EA may be constrained by
using 'prudent' executor or evaluator characters, in order for them to comply
with already known specifications. Additionally, 'expert' characters can be
introduced within an EA, to implement already known procedures. There
may be 'stylist' characters, which can either push (execution), or pull
(evaluation) a generation of candidates towards a desired direction. In the
executor type, a stylist character may apply a procedure in a definite
manner, to produce a desired effect, while in the evaluator type it can
measure a candidate’s compliance to some visual specifications. In
principle, an infinite number of types and sub-types of characters can be
defined, such as, novel, subtle, bold, delicate, colorful, mad, traditional, etc.
These characters can be used together in a collaborative environment,
serving as a team of customizable virtual agents. Similarly, there may be a
pool of alternative tools for each operator. As claimed above, for design
problems, evolutionary operators cannot be specified and fixed before the
evolutionary process starts; rather, they have to be determined on the run
with respect to the contextual formations. If an intelligent technology capable
of contextual evaluation was available, an intelligent choice amongst the
alternative characters and tools could serve for the required dynamism.

The DGF will be applied on a toy task, which concerns the generation of a
series of desktop icons for the system. A candidate icon is produced by the
application of a series of graphic stamps, through plain, transparent, or
gradient color definitions, over a canvas (Figure 9). These stamps can be

Figure 8. Constitution of evolutionary operators
as games.

Design games: A conceptual framework for dynamic evolutionary design 147

formed by graphic patterns and texts. The task is to develop icons that
conform to the style definitions of the evaluator character. Following this task
definition, a limited inventory of characters and tools are developed.

Characters hold a set of guiding parameters that stochastically determine
the behavior of a tool. Most tools allow” for partial randomization, so that the
exact implementation values for two applied (determined) games that use
the same tool and character will be different. Therefore, instead of the
generic character, these values have to be stored within the genotype of an
individual. The genotype of a candidate (i.e., individual) is a variable length
chromosome, which holds a stack of initiation operations (i.e., production
games) (Figure 10). Each gene holds the implementation information of a
specific operation, i.e., one or more tools and corresponding implementation
values. An individual is produced (genotype-phenotype mapping) by
sequentially applying all determined games within the chromosome. With
this genotype, it is straightforward to delete or add new genes or to apply
crossover.

The production tools are
grouped into three types
(Figure 9). On the first
level, there are alternative
stamp tools (color area,
pattern stamp, and text).
On the second level, there
are matrix transformations
(translate, scale, rotate).
On the third level, color
application tools are
situated (plain color,
transparent color, and
linear gradient).

Figure 9. Representation and initiation for the desktop icon task.

Figure 10. Genotype.

148 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

Executor and evaluator character types are
separated. The example evaluator character
describes guidelines (in the form of
thresholds and coefficients) for rating
several visual characteristics (Figure 11).
The example executor character specifies
which patterns will be used and within which
transformation limitations. Additionally, the
collection of process parameters for the
evolutionary process operators can be
interpreted as a fixed, deterministic executor
character.

The evaluations are carried out through the
phenotypic representations. Therefore,
several experimental image analysis tools
have been implemented to enable the
evaluations for high-level visual
characteristics. For each phenotype image, using a histogram of color
values the following analyses are carried out:

 List most frequent colors.

 Detect whether an image is almost completely black or white.

 Find largest color areas and dominant colors (The areas concern
similar colors, determined according to closeness of the hue values).

 Measure if black or white is amongst the most dominant colors.

Once analysis of an image is completed,
the results are transferred to the evaluation
tools. These tools use this information for
additional procedures to rate the fitness of
an individual. The different types of
evaluations are converted into a single
fitness value through weighted
aggregation, according to the parameters
defined by the evaluator character. The
evaluation procedures are as follows:

 If the image is almost black / white,
add specified award / penalty.

 If the character has the option black /
white dominance, and if black or
white is amongst the dominant
colors, add specified award / penalty.

 If color count is below / above the threshold, add award / penalty.

 If the number of dominant color areas in an image is below a
threshold, add award / penalty.

 Check each of the most dominant color areas, whether largeness of
this area is between specified ratios with respect to the canvas area
and add award / penalty for each.

 Using the list of dominant colors, check for the saturation and
lightness values of each color. If results are above / below specified
thresholds, add award / penalty.

There are three mutation (reproduction) operators:

1. Insert mutation, inserts a randomly generated production game to a
random position within the chromosome of an individual.

Figure 11. Character examples.

Figure 12. Parameter mutation.

Design games: A conceptual framework for dynamic evolutionary design 149

2. Subtract mutation, deletes a randomly chosen game from the
chromosome.

3. Parameter mutation, randomly changes several values of an existing
game, such as position, size, transparency, or color (Figure 12).

These mutations are carried out within specified constraints, so that they are
kept within meaningful dimensions in relation to the canvas. This is a type of
prudence filter, and is controlled by the process character.

For recombination, two crossover operators are implemented. In one-point
crossover (Figure 13), a random point is determined in each parent
chromosome and the first part of the first chromosome is recombined with
the last part of the second, while second part of the first is recombined with
the first part of the second.

In two-point crossover (Figure 14), two indexes are determined in each
chromosome, and the portion of chromosomes between the indexes is
exchanged.

The only implemented selection operator is tournament selection. Two
parents have to be chosen for the generation of each couple of new
candidates. In the implemented tournament selection mechanism, for each
parent, two individuals are randomly selected from the population. Then

Figure 13. One-point crossover.

Figure 14. Two-point crossover.

150 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

these are compared in terms of their fitness values and the better one is
selected as the parent. Selections for the creation of the new generation are
likewise done through tournaments of two.

The evolutionary process starts with the creation of a set of candidates (i.e.,
individuals) through the selection and application of a series of production
games for each candidate. This process is called initiation and the first set of
candidates is called the first generation. A series of process parameters
define problem-specific aspects and fine-tune the behavior of an EA. In this
application, the generation count (which is used as the stopping criterion),
the number of individuals at one generation, the quantity of offspring
(specified separately for crossover and mutations), width and height values
for each candidate image, crossover and mutation methods (tools,
characters, stamps, and texts) are fixed before the process begins;
therefore, the EA is static. Figure 15 describes the basics of the evolutionary
process as implemented.

Figure 15. Evolutionary process for the DGF application.

Design games: A conceptual framework for dynamic evolutionary design 151

As described above, the evaluations are based on several visual qualities.
Each of these qualities defines a separate objective, and the multitude of
objectives is reconciled with a weighted aggregation method. Each rating for
each quality is multiplied by a coefficient, so that the different ratings are
scaled according to user-defined preferences. Using combinations of desired
values and coefficients for these qualities, different evaluator characters can
be defined for the evaluation of candidate images.

4. Presentation of the results
Several sets of trials have been carried out for the desktop icon task.
Starting with only plain color areas, other types of stamps (transparent
areas, gradients, pattern stamps, and texts) are gradually involved within
trials. For the creation of complex stamp patterns, a two-level hierarchical
approach is used (Figure 16). On the first level, a set of patterns are
manually created. Through a series of evolutionary runs that use these
patterns beside other stamp tools, several resulting images are obtained.
Some of these images in turn were converted into stamps and added to the
pool of pattern stamps for further trials.

Figure 17 presents an example evolutionary run for the icon generation task.
The character definition specifies a threshold for number of separate colors.
The number of colors is not calculated from absolute RGB color mode
values. Instead, the HSL color mode equivalent is found for each color
value. The hue value is within a circular range of 0-255 points. For practical
reasons, two colors are assumed same, if they are at most 20 points away
from each other. In the example, if there are more than 200 separate colors,
a penalty is applied. After a list of most frequent colors is found, the
saturation test is applied to each, which requires the saturation of a color
within specified thresholds. This example demands medium range saturation
values. The evaluator character defines three tests for color areas. Each
color area is given an award or a penalty, if the ratio of its area to the whole
canvas is within a specified interval. The example definition prefers large
(0.5 to 0.8 of canvas) and medium sized (0.3 to 0.5 of canvas) color areas,
and punishes small ones (0.1 to 0.3). Color dominance is not related to color
areas, but with absolute frequency of a color, which might be dispersed
throughout the image. The example character rewards high frequencies and

Figure 16. A simple example of hierarchical evolution.

152 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

punishes frequencies below a ratio of 0.2. These definitions target kinds of
images that have a few dominant color areas and at the same time try to
diminish the range of different hues, and the number of small color areas,
i.e., artifacts. The last important definition concerns the lightness value,
where darker colors are preferred (over 60, within a range of 0-100). The
executor character defines the application and process parameters. There is
also a prudence constraint, which limits the rotation of the text stamps within
20 degrees. Two of the mutation tools are used in an interchangeable
Manner with equal probabilities of selection. This mechanism simply
exemplifies the selection of a tool from a pool of tools, to be used together
with a character within a design game. From the process graph (Figure 17),
it can be observed that the population has converged within 21 generations.
The success of the evaluator character can be visually assessed by
comparing the randomly generated first generation with the last one. As can
be seen, the target of obtaining images with a low range of hues and with a
small number of large color areas that are in medium saturation and
medium-to-dark tones is largely achieved in this example.

The success or health of an EA can be assessed through the process
graphics, which illustrate the progression of average, minimum, and
maximum fitness values for each generation. However, this type of
assessment does not demonstrate, whether the character approach worked
or not. Thus, for our application, it was necessary to be able to visually
assess, whether, through the evolutionary process, desired characteristic
have been achieved or not. Such visual assessment is possible for only the
rather distinctive character types. For these reasons, the evaluator character
that is used for the trial (Figure 17) defines variations for rather bold and
colorful images, with a few large, medium-to-high saturation color areas. For
the same reason, although it was possible within the implementation to use
several characters simultaneously as alternatives, it would be difficult to
assess which result was associated with each of the characters. This
necessitated the use of a single evaluator and a single executor character
for each evolutionary run.

Additionally, it proved difficult to define subtle visual characteristics of an
image by a parametric approach. The small features and the subtle
variations of color gradients proved important for attaining a desired image,
which is almost impossible to manually define through parameters. A more
practical and possibly more dynamic idea could be an image-based
evaluation approach (an example can be found in Sönmez, Erdem, and
Sarıyıldız, 2010).

5. Conclusions
This paper presented a general, open-ended, and flexible evolutionary
design framework called the Design Games Framework, through which,
several options for dynamic evolutionary systems have been explored. A
simple application demonstrated how the framework could be used for a
working EA. Through this application, firstly, tool, character, and game
constructs are implemented and illustrated. Secondly, a simple hierarchical
evolutionary procedure is exemplified. Thirdly, although on a primitive level,
it is shown that virtual characters can capture stylistic definitions, and that
these can be used for evolving images. An evolution in line with the
evaluator character is identifiable; however, given the simplicity of the
analysis and production tools, attaining impressive results was not a target.

Design games: A conceptual framework for dynamic evolutionary design 153

The only type of character collaboration was amongst the evaluator and
executor characters, which does not demonstrate the cooperative operation
of alternative characters for the same operator (or game). The implemented
system is the minimum design system that could illustrate the basic aspects
of the DGF. The application does not include large tool and character

Figure 17. An example run for the icon generation task.

154 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

inventories or elaborate analysis and interface tools, because, utility of these
could only be demonstrated after additional intelligent technologies are
incorporated. Further studies will illustrate the application of dynamic
evolutionary strategies within more complicated problem settings.

Acknowledgements
This study has been supported by TUBITAK (The Scientific and Technical
Research Council of Turkey) and Istanbul Technical University "Scientific
Research and Development Support Program".

References
Alexiou, K., Zamenopoulos, T., and Johnson, J. H. (2009), Exploring the

neurological basis of design cognition using brain imaging: some
preliminary results. Design Studies, 30 (2009) 623-647.

Ang, M. C., Chau, H. H., Mckay, A., and De Pennington, A. (2006),
Combining evolutionary algorithms and shape grammars to generate
branded product design. In J.S. Gero (Ed.), Design Computing and
Cognition ’06, 521–539.

Caldas, L. G. (2003), Shape generation using pareto genetic algorithms.
CAADRIA 2003.

Caldas, L. G. (2005), Three-dimensional shape generation of low-energy
architecture solutions using Pareto GA's. Proceedings of
ECAADE'05, Lisbon, September 21-24, 2005, pp. 647-654.

Caldas, L. G. (2006). GENE_ARCH: An evolution-based generative design
system for sustainable architecture. I. F. C. Smith (Ed.), EG-ICE
2006, LNAI 4200, pp. 109 – 118, 2006.

Caldas, L. G. (2008), Generation of energy-efficient architecture solutions
applying GENE_ARCH: An evolution-based generative design
system. Advanced Engineering Informatics, Volume 22, Issue 1
(January 2008).

Caldas, L. G. and Norford, L. K. (2002), A design optimization tool based on
a genetic algorithm. Automation in Construction, 11 (2002) 173–
184.

Caldas, L. G. and Norford, L. K. (2003), Genetic Algorithms for Optimization
of Building Envelopes and the Design and Control of HVAC systems.
Journal of Solar Energy Engineering, August 2003, Vol. 125.

Caldas, L. G. and Rocha, J. (2001), A generative design system applied to
Siza’s school of architecture at Oporto. In J. S. Gero, S. Chase and
M. Rosenman (Eds), CAADRIA2001, Key Centre of Design
Computing and Cognition, University of Sydney, 2001, pp. 253-264.

Chouchoulas, O. (2003), Design Shape Evolution: An Algorithmic
Method for Conceptual Architectural Design Combining Shape
Grammars and Genetic Algorithms. Phd dissertation, Centre for
Advanced Studies in Architecture Department of Architecture and
Civil Engineering University of Bath.

Chouchoulas, O. and Day, A. (2007), Design exploration using a shape
grammar with a genetic algorithm. Open House International, Vol
32, No.2, June 2007.

Cross, N. (2006), Designerly Ways of Knowing. Springer,London.
Da Silva Garza, A.G. and Lores, A. Z. (2008), An evolutionary process

model for design style imitation. In J.S. Gero and A.K. Goel (Eds.),
Design Computing and Cognition ’08, Springer Science +
Business Media B.V. 2008.

De Jong, K. A. (2006), Evolutionary Computation: A Unified Approach.
The MIT Press.

Design games: A conceptual framework for dynamic evolutionary design 155

Dillenburger, B., Braach, M., and Hovestadt, L. (2009), Building design as an
individual compromise between qualities and costs a general
approach for automated building generation under permanent cost
and quality control. In T. Tidafi, and T. Dorta (Eds.), Joining
Languages, Cultures and Visions: CAADFutures 2009.

Dorst, K. (2006), Understanding Design. Gingko Press (2nd edition), Corte
Madera, CA.

Dorst, K. and Cross, N. (2001), Creativity in the design process: co-evolution
of problem-solution. Design Studies, Vol. 22, No. 5, pp. 425-437.

Dorst, K. and Dijkhuis, J. (1995), Comparing paradigms for describing design
activity. Design Studies, 16 (1995) 261-274.

Eiben, A. E. and Smith, J. E. (2003), Introduction to Evolutionary
Computing. Springer, New York.

Frazer J. H. (1995), An Evolutionary Architecture. Architectural Association,
London.

Geigel, J. and Loui, A. (n.d.), Automatic Page Layout Using Genetic
Algorithms for Electronic Albuming. Research and Development,
Eastman Kodak Company, Rochester, NY 14650-1816.

Gero, J. S. and Kannengiesser, U. (2004), Modelling Expertise of Temporary
Design Teams. Journal of Design Research, 2004 - Vol. 4, No.2.

Gero, J. S. and Kannengiesser, U. (2007), A function–behavior–structure
ontology of processes. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, (2007), 21, 379–391.

Gero, J.S., Louis S., and Kundu, S. (1994), Evolutionary learning of novel
grammars for design improvement. AI EDAM, 8(2):83-94.

Gero, J. S. and Schnier, T. (1995), Evolving representations of design cases
and their use in creative design. Third International Conference on
Computational Models of Creative Design.

Damski, J. C. and Gero, J. S. (1997), An evolutionary approach to
generating constraint-based space layout topologies. In R. Junge
(Ed.), CAADFutures 1997, Kluwer, Dordrecht. pp. 855-864.

Dawkins, R. (1996), The Blind Watchmaker. Penguin Books, pp. 43-74.
Gero, J. S. and Kazakov, V. A. (1998), Evolving design genes in space ayout

planning problems. Artificial Intelligence in Engineering, 12
(1998) 163-176.

Hanna, S. (2005), Automated representation of style by feature space
archetypes: distinguishing spatial styles from generative rules.
International Journal of Architectural Computing, issue 01,
volume 05.

Hanna, S. (2006), Representing style by feature space archetypes,
description and emulation of spatial styles in an architectural context.
In J.S. Gero (Ed.), Design Computing and Cognition’06, 2006, 3–
22.

Hanna, S. (2007), Defining implicit objective functions for design problems.
GECCO’07, July 7–11.

Janssen, P. H. T. (2004), A design method and computational
architecture for generating and evolving building designs. Phd
Dissertation, Hong Kong Polytechnic University.

Janssen, P. H. T. (2006), A generative evolutionary design method. Digital
Creativity, 17:1, 49 – 63.

Jo, J. H. and Gero, J. S. (1998), Space layout planning using an evolutionary
approach. Artificial Intelligence in Engineering, 12 (1998) 149-
162.

Kalay, Y. E. (Ed.) (1992), Evaluating and Predicting Design Performance.
Wiley, New York.

156 ITU A|Z 2014- 11/ 1 – N.O. Sönmez, A. Erdem

Lawson, B. (2004), What Designers Know. Elsevier / Architectural Press,
Amsterdam.

Lawson, B. (2005), How Designers Think: The Design Process
Demystified. Architectural Press (fourth edition).

Lawson, B. and Dorst, K. (2009), Design Expertise. Architectural Press.
Lewis, M. (2008), Evolutionary visual art and design. In Romero, J., and

Machado, P. (Eds.), The Art of Artificial Evolution: A Handbook
on Evolutionary Art and Music, Springer-Verlag.

Liu, H. and Tang, M. (2006), Evolutionary design in a multi-agent design
environment. Applied Soft Computing, 6 (2006) 207–220.

Rittel, H. W. J. and Webber, M. M. (1973). Dilemmas in a General Theory of
Planning. Policy Sciences, 4 (1973), 155-169.

Rosenman, M. A. (1997), The generation of form using an evolutionary
approach. [online] Available at: <http://arch.usyd.edu.au>
(Accessed: September 2009).

Rosenman, M. A. and Saunders, R. (2003), Self-regulatory hierarchical
coevolution. AI-EDAM, 2003, 17, 273–285.

Ross, B.J., Ralph, W., and Zong, H. (2006), Evolutionary image synthesis
using a model of aesthetics. In G.G. Yen, S.M. Lucas, G. Fogel, G.
Kendall, R., Salomon, B.T. Zhang, C.A.C. Coello, and T.P.,
Runarsson, (eds.), Proceedings of The 2006 IEEE Congress on
Evolutionary Computation, Vancouver, BC, Canada. IEEE Press,
2006, 1087–1094.

Schön, D. A. (1983), The Reflective Practitioner. Basic Books, New York.
Simon, H. A. (1973). The Structure of Ill-Structured Problems. Artificial

Intelligence, 4 (3): 181–201.
Simon, H. A. (1996), The Sciences of the Artificial. MIT Press (3rd edition),

Cambridge, Mass.
Sönmez, N. O. and Erdem A. (2009), Design Games as a Framework for

Design and Corresponding System of Design Games.
Computation: The New Realm of Architectural Design 27th
eCAADe Conference Proceedings, Istanbul (Turkey), 16-19
September 2009, pp. 119-126.

Sönmez, N. O., Erdem, A., and Sarıyıldız, S. (2010), Automated Evaluation
and Generation of Graphic Arrangements through Adaptive
Evolution. Generative Art 2010, Milano, 15-17 December 2010,
http://www.generativeart.com/.

Turrin, M., von Buelow, P., and Stouffs, R. (2011), Design explorations of
performance driven geometry in architectural design using
parametric modeling and genetic algorithms. Advanced
Engineering Informatics [online] Available at:
<doi:10.1016/j.aei.2011.07.009> (Accessed: September 2011).

Turrin, M., von Buelow, P., Kilian, A., and Stouffs, R. (2011), Performative
skins for passive climatic comfort: A parametric design process.
Automation in Construction [online] Available at:
<doi:10.1016/j.autcon.2011.08.001> (Accessed: September 2011).

Tasarım oyunları:
Dinamik evrimsel tasarım için kavramsal bir çerçeve

Evrimsel hesaplamalar (EH) tabiri, biyolojik evrimden ilham alan bir hesaplamalı
teknikler ailesini ifade eder. EH çoğunlukla 'problem çözme' ve optimizasyon
alanlarında, özellikle problemlerin kolayca uygulanabilir algoritmik çözümlerinin
bulunmadığı durumlarda kullanılmaktadır. Bunların yanında evrimsel yaklaşımlar bazı
tasarım ve sanat alanlarını da kapsayan çok çeşitli alanlarda sınanmıştır. Ancak
EH'ın tasarım alanlarına çoğunlukla mühendislik alanlarından transfer edilmiş olması

http://www.generativeart.com/

Design games: A conceptual framework for dynamic evolutionary design 157

çoğu uygulamada tasarım görevlerinin iyi-tanımlı problemler gibi ele alınması
sonucunu doğurmuştur. Çoğu evrimsel tasarım uygulaması, tasarım görevlerini
problem çözme ve optimizasyon yöntemleri üzerinden çözebilmek hedefiyle, ya 'iyi
tanımlı' alt problemlere odaklanmakta ya da basitleştirilmiş, statik veya performans
odaklı tasarlama prosedürleri tariflemektedir. Bu durum pek çok araştırmacıya
sorunlu görünmemiştir, zira tasarımı rasyonel bir problem çözme etkinliği olarak
tarifleyen, böylece tasarım görevlerinin 'arama' ve optimizasyon yöntemleriyle
çözülebileceğini varsayan problem çözme paradigması, tasarım araştırmaları ve
kuramları üzerinde önemli bir etkiye sahip olagelmiştir. Ancak, tasarım etkinliğinin
tümüyle bu paradigma içinden tariflenebileceğini iddia etmek mümkün değildir.
Tasarımcıların karşı karşıya kaldıkları problemler çoğunlukla 'kötü tanımlı' ve 'açık
uçlu' problemler olarak nitelendirilmektedir. Çoğu tasarım durumunda, iyi tanımlı,
berrak ve bütüncül bir tarife sahip problemler başlangıçta verili değildir; problemlerin
karmaşık ve sorunlu durumlar içinden üretilmesi gerekmektedir. Tasarım sürecinde
çözümler ve problemler paralel olarak evrimleşir; öyleki, tasarımcının görevi
problemlerin çözülmesi kadar bu problemlerin oluşturulmasıdır da. Öte yandan,
optimizasyon yöntemleri belirli bir durumun özsel gereklerinin, çözüm süreci
başlamadan önce listelenebileceğini ve ölçülebilir bir formda ifade edilebileceğini
varsayar. Fakat tasarımcılar, problemin tüketici bir ifadesine sahip olmamanın
ötesinde, sayısallaştırılabilir kriterlere de sürecin başında sahip olmayabilirler.
Tasarım ürünleri kesin olarak doğru ya da yanlış olmadıkları gibi, bunların birbirleriyle
karşılaştırılmaları da yoruma açıktır. Bu sebeplerle, en azından ana kararların artık
oturmuş olduğu detay tasarım aşamalarına kadar, tasarım bir optimizasyon problemi
olarak ele alınamaz.

Evrimsel tasarım, tasarım süreci boyunca dönüşen bağlamı yeniden
değerlendirebilecek dinamik problem tarifleme ve değerlendirme yaklaşımları
gerektirmektedir ve bu gerekler henüz evrimsel tasarım uygulamalarında karşılıklarını
bulmamışlardır. Bu sebeplerle, evrimsel 'tasarım' uygulamalarının varlığından söz
edilebilmesi güçtür. Bu alanda pratiğe yönelik uygulamalardan daha öncelikli olarak,
tasarım kuramları ve uygulama arasında kalan bir seviyede, tasarımın kendine has
özelliklerini hesaba katacak yeniden değerlendirmelere ihtiyaç duyulmaktadır.
Dolayısıyla, bu çalışmada tasarımdaki EH uygulamalarının eleştirel bir yeniden
değerlendirilmesinin gerçekleştirilmesi, dinamik evrimsel tasarımın araştırılmasına
yönelik bir kavramsal çerçevenin önerilmesi ve bu çerçevenin bir evrimsel algoritma
bağlamında işlerliğinin ortaya konması hedeflenmiştir.

"Tasarım Oyunları Çerçevesi" dört temel öğeden oluşmaktadır: karakter, araç, oyun
ve ürün. Tasarım süreçleri, tasarım ürünlerini dönüştüregelen tasarım oyunlarının
kombinasyonları ile tariflenir. Her bir tasarım oyunu en az bir karakter ve bir aracın bir
arada işleyişiyle oluşmaktadır. Araçlar tasarım önerilerini ve tasarım durumunu
dönüştürür. Karakterler ise bu dönüşümün tarzını kontrol eder, zira araçlar çok-
kullanımlık, jenerik kurgulardır. Araçların jenerik tarifi ile kullanım tarzları arasındaki
ayrım sadece çok amaçlı araçların üretilmesini değil, daha da önemlisi, dinamik
evrimsel süreçlerin üretilmesini hedefler. Çerçevenin detaylı tariflenmesinin ardından
dinamik evrimsel tasarımı mümkün kılacak mevcut evrimsel mekanizmalar
tartışılmıştır. Bunlar, çok-seviyeli paralel evrim (öğrenen sistemler), problemin üretim
üzerinden bileşenlere ayrıştırılması ve kendi kendine adapte olan evrim olarak
sıralanmıştır.

Bir tasarım problemini pratikte ele almak ya da dinamik evrim sorununu çözmek
çalışmanın amaçları arasında yer almamakla birlikte, Tasarım Oyunları Çerçevesi'nin
görece soyut bir ölçekte yer alan kavramlarının bir evrimsel algoritmanın
bileşenlerine nasıl uygulanabileceğini bir örnek üzerinden haritalamayı hedefleyen bir
deneysel EH uygulaması da makalenin son kısmında sunulmaktadır. Bu amaçla
geliştirilen üretim ve analiz araçları, karakter tipleri, oyun kurguları ve evrimsel
hesaplama yaklaşımını oluşturan temsil, eşeyleme, üreme, değerlendirme, mutasyon
ve evrimsel süreç detaylı biçimde aktarılmış, gerçekleştirilen denemelerin ayrıntıları
ve sonuçları sunulmuş ve tartışılmıştır. Önerilen çerçeve uyarınca daha karmaşık
tasarım problemlerine yönelik dinamik evrimsel stratejilerin ve gerekli teknolojilerin
geliştirilmesi sonraki çalışmaların konusudur.

