
An assessment method for a
designerly way of computational
thinking

Abstract
The article presents an assessment method for the designers’ use of abstraction

skills in the process of CT. Starting with questioning how abstraction partakes
in design and computer sciences, the study focuses on the impacts of making
conceptual and procedural abstractions in CT. For that, it offers an assessment
method to explore whether a visual thinker’s ability to make abstractions has any
impact on their process of visual computing. As a concept, CT is considered as
a mental activity for formulating a problem to admit a computational solution
by combining the intelligence of humans and machines. It is addressed as a col-
lection of mental tools and concepts that are borrowed from computer scienc-
es. Within this regard, architecture is one of the fields that require careful con-
sideration of these cognitive aspects towards CT. Although both computer and
design sciences value abstraction in similar ways, its introduction to the design
field slightly differs from its introduction to computer sciences. Considering the
differences in their conceptual background and reflective practices, it can be said
that the abstraction of a visual thinker may not always constitute the way that CT
requires. Based on a two-stage experiment in a CAD modeling framework, the
developed methodology revealed that the designers’ abilities to make abstractions
at a procedural level partake a significant role in their visual computing. While
the first experiment is conducted with 3 sophomore architecture students, the
second was conducted with the participation of 3 non-designers along with the
same architecture students.

Keywords
Procedural abstraction, Computational thinking, Soft skill, CAD modeling,
Assessment method.

Elif Belkıs ÖKSÜZ1, Gülen ÇAĞDAŞ2

1eeoksuzz@gmail.com • Department of Architecture, Faculty of Architecture,
Istanbul Technical University, Istanbul, Turkey
2cagdas@itu.edu.tr • Department of Architecture, Faculty of Architecture,
Istanbul Technical University, Istanbul, Turkey

Received: February 2020 • Final Acceptance: March 2020

do
i:

10
.5

50
5/

itu
jfa

.2
02

0.
86

72
9

ITU A|Z • Vol 17 No 2 • July 2020 • 199-208

ITU A|Z • Vol 17 No 2 • July 2020 • E.B. Öksüz, G. Çağdaş

200

1. Introduction
We are currently facing a paradigm

shift towards a computing and coding
culture in education. From digital tools
to artificial intelligence, computational
technologies are visibly affecting our
everyday life and shaping our cognitive
development. While the paradigm we
are heading towards requires technol-
ogies to be ‘brain-friendly’ enough to
complement our cognitive process-
es (Dror, 2011), it also needs these
processes to be similar to the series
of internal states like carrying out a
program (Weisberg & Reeves, 2013).
Alternatively, as Colin Ware puts it
(2008), “(the) Real-world cognition
increasingly involves computer-based
cognitive tools that are designed to sup-
port one mode of thinking or another;
and as time passes, these tools change
how people think” (p:181). Either way,
we are introduced to different modes
of thinking in education; and without
a doubt, Computational Thinking is
the most in-demand. Over a decade, it
has been promoted as a cognitive tool,
which helps develop an understanding
of computational technologies.

Despite its early use through pro-
gramming practices, the concept of
Computational Thinking (CT) is now
offered as a soft skill, as a combination
of certain cognitive features, which can
be blended in any disciplinary educa-
tion curricula. With its cognitive fea-
tures, CT is acknowledged as a men-
tal activity for formulating a problem
to admit a computational solution by
combining the intelligence of humans
and machines (Wing, 2017; p:8). It is
addressed as a collection of mental
tools and concepts that are borrowed
from computer sciences (NRC, 2010;
p:10). For its integration to disciplines
outside computer sciences or incorpo-
ration into different subjects or cours-
es, the concept of CT is usually intro-
duced with its core cognitive features,
which are abstraction, pattern recogni-
tion, decomposition, and algorithmic
thinking [Figure 1].

On the other hand, thinking com-
putationally is not about having good
knowledge of these features. As a soft
skill, it requires putting the knowl-
edge into action, using, transferring,
and adapting it into different problems

or situations. For that, addressing the
conceptual counterparts of these fea-
tures is essential. As Guzdial (2008)
posits, “paving the way for computa-
tional thinking from computer sci-
ences to other academic fields may
require adapting this mode of think-
ing to match the needs of ‘novices’
and non-majors.” Because, “if students
don’t learn the material or any knowl-
edge well in the first place, they can’t
possibly transfer it to new situations”
(Guzdial, 2010; p:5). In this case, care-
ful consideration is required for the de-
signer’s use of abstraction towards CT.

Even though both computer and
design sciences consider the cognitive
value of abstraction in similar ways,
differences occur in their conceptual
approach to this skill and reflect on
their practices. Therefore, the abstrac-
tion of a visual thinker may not always
constitute the way that CT requires.
Yet, little attention has been paid to
the difference in the designer’s use of
abstraction in visual computing. How-
ever, as Wing emphasizes, the process
of CT is mostly about making good
abstractions; it involves defining ab-
stractions, working with multiple lay-
ers of abstractions, and understanding
relations between them (Wing, 2008; p:
3718).

Regarding the gap in the literature,
this study presents an assessment meth-

Figure 1. The mental tools of computing, adapted from
Wing (2008).

An assessment method for a designerly way of computational thinking

201

od for the designers’ use of abstraction
skill in visual computing. Starting with
questioning how abstraction partakes
in design and computer sciences, the
study focuses on the impacts of differ-
ent levels of abstraction in CT. For that,
it offers an assessment method to ex-
plore whether a visual thinker’s ability
to make abstractions has any impact on
their process of visual computing. For
the study, the assessment method was
used in two experiments, which were
conducted with non-designers and de-
signers working in a CAD modeling
framework. In the end, the developed
method is discussed towards the future
possibilities of its use in designer’s ed-
ucation.

2. Background

The conception of ‘abstraction’ or
‘abstract thinking’ is one of the funda-
mentals skills in both computer and
design sciences, to be acquired in their
early years of education. It is taught to
deal with different forms of complexi-
ties in simpler ways. From the perspec-
tive of a computer scientist, Jeannette
Wing (2008) summarizes the use of
abstraction as follows: “An abstraction
is the ability to generalize and transfer
a solution from one problem to other
similar problems…our abstractions
are extremely general because they are
symbolic…they are for representing
and processing the data to extract the
knowledge buried within or spread
throughout the data” (Wing, 2008;
pp:3717-3720). Similarly, Gabriela
Goldschmidt (2011) proposes the same
concept ‘as a key prerequisite for the
successful use of external sources to aid
design creativity that helps to distance
oneself from the source properties and
transfer only the essential relation-
ships’ for the design sciences (p: 97).’
Nonetheless, both fields adopt this skill
with certain similarities and differenc-
es towards their conceptual framework
and endorse it with their distinct tools
and strategies; so, the differences in
their conceptual approach eventually
reflect on their behavior pattern.

On the other hand, as Sengupta et.
al (2013) highlights, Wing’s definition
of abstraction skill is highly similar to
John Locke’s view. For Locke (1979),
making abstraction is the process in
which “ideas were taken from par-

ticular beings become general repre-
sentatives of all of the same kind.” To
abstract, we take ideas received from
objects and separate them “from all
other existences and the circumstances
of real existence, as time, place, or any
other concomitant ideas” (Arnheim,
2004; p: 154). For Arnheim (2004),
Locke’s understanding of abstraction
is to be free from any perceptual col-
lateral, which would be viewed as an
impurity; yet, instead of relying on sen-
sory experience, this kind of abstract
thinking was supposed to take place in
words (p: 154). Nonetheless, this iso-
lated approach may not be fruitful as
much as expected for visual thinkers,
or design students for that matter. As
opposed to a scientist’s procedural ap-
proach to abstract thinking, a design-
er’s approach can be highly conceptual,
and rely on the embodied experience.

For a visual thinker, abstraction
requires dealing with multiple forms
and genres of representations beyond
drawing, sketching, modeling; and it
usually occurs while translating be-
tween these forms of representations.
Hence, it requires making perceptual
interpretations. For instance, archi-
tecture students are trained to make
visual interpretations, visualize their
thoughts through different forms of
representation. And keeping up with
such practices, they develop their vi-
sual interpretation, which eventually
determines their designerly ways of ab-
stract thinking. Even though nothing
is more concrete than color, shape, and
motion in visualization, there is always
a possibility in which a designer’s ab-
straction may not reflect the necessary
information for a scientist to proceed
with their work. As an artist or a de-
signer, a visual thinker owns the poten-
tial of mentally adding simple patterns
to their work to test possible design
changes before making any chang-
es to it (Ware, 2010; p: 170). Notably,
in creative stages of design, designers
seem to repeatedly change their ways
of seeing (Schön, 1987). According to
Lawson (2006), “Architects are taught
through a series of design studies; they
are not asked to understand problems
or analyze situations. By compari-
son, scientists are taught theoretically
and are taught that science proceeds
through a method which is made ex-

ITU A|Z • Vol 17 No 2 • July 2020 • E.B. Öksüz, G. Çağdaş

202

plicit and which can be replicated by
others.” In other words, scientists and
architects follow different strategies
when approaching a problem and use
their abstraction skills towards that. As
opposed to scientists, architects devel-
op their abstraction skills by practicing
with solution-focused strategies.

However, working with computa-
tional design tools and devices requires
thinking quite differently than working
with traditional tools (Erhan, Youssef
& Berry, 2012). The computational op-
erations behind design technologies
endorse designers to utilize CT as a
mental tool. All forms of computing,
from the use of electronic devices to
programming, are different forms of
computational operations (Blackwell,
2002). In most cases, the workflow
behind computer-aided design tech-
nologies requires making abstractions
at a procedural level as computer sci-
entists do. It demands to practice with
different levels and forms of abstrac-
tion. This should be taken into account
when promoting computer-aided
design technologies, especially when
teaching visual thinkers, such as archi-
tecture and art students.

Developing skills to make proce-
dural abstractions is an essential part
of CT. When programming, avoiding
repeating code, making abstractions
and generalizations for the repeating
procedures, makes projects easier to
program and maintain. Therefore, an
assessment method to learn one’s abil-
ities, strengths, and weaknesses for the
concepts of CT can be quite fruitful to
construct individualized learning and
teaching strategies to sharpen their CT
skills. Developing a better understand-
ing of a designerly approach to CT can
also lead to better learning and train-
ing techniques suitable for the design
technology curriculum at all levels. In
this regard, the study aimed to deter-
mine the designer’s ability to make ab-
stractions at a procedural level in visual
computing. Regarding these differenc-
es in the use of abstraction and ques-
tioning their impact on visual thinkers,
two experiments were conducted to
assess the cognitive processes of visu-
al thinkers within a systematic frame-
work.

3. Method
3.1. The assessment of a visual
thinker’s use of abstraction towards
computational thinking

Since this is a novel analysis for the
designers’ use of abstraction skills to-
wards a CAD modeling framework, a
vital first step is to establish a coding
scheme that captures behaviors at a
broad enough level to be applicable to
related research and specific enough
to identify behaviors that are unique
to visual thinkers. In this regard, the
assessment method in the study was
adapted from one of the existing edu-
cational tools for CT.

Because of the differences in the
subjects’ level of design expertise, the
experiments were conducted in two
stages. While the first one was con-
ducted to evaluate designers’ use of
abstraction in visual computing, the
second was conducted to compare
their performances to non-designers.
The objective of both experiments was
to explore the modeling processes of
the subject that have created the same
geometry. For a task, the subjects were
asked to model particular shapes with
the limitation of specific commands
and tools in the AutoCAD interface.
In the experiments, the ability of visu-
al thinkers to establish and maintain
the relationship between different lev-
els of abstraction was evaluated in the
context of the shape making practices,
which were developed through a series
of pilot studies with architecture stu-
dents.

3.2. Participants

Regarding the needs of a systematic
analysis of the subjects’ cognitive ac-
tions, the number of participants was
limited to 6 participants; 3 sophomore
architecture students with a mean age
of 22 and 3 non-designers from the
law, medical sciences, and engineering
disciplines with a mean age of 24. For
both experiments, the subjects were
chosen on a voluntary basis and were
told not to inform the other volunteers
to keep their identities confidential.
Since the content of the experiments
requires the use of spatial and motor
skills, all subjects were expected to pass

An assessment method for a designerly way of computational thinking

203

a mini cognitive test before their tasks.
Questions were directed to evaluate
subjects’ competences of using spatial
abilities on a computer screen. To ex-
tend the differentiation between the
participants’ levels of design expertise,
the architecture students were select-
ed from the sophomore years. Also, it
was preferred that all participants had
gained an experience of problem-solv-
ing in their disciplinary education.

3.3. Experiment implementation

The workflow behind computer-aid-
ed design technologies involves differ-
ent sets of computational operations
and requires to think computationally.
Just as working with visual program-
ming tools, working with traditional
CAD modeling programs also involves
practicing CT skills for architects (Sen-
ske, 2014; Denning, 2017). Especially,
the use of modeling tools and appli-
cation of commands for the creation
of geometric forms requires to make
procedural abstractions. Keeping that
in mind, studies in architecture edu-
cation, which involve practicing with
computer-aided design technologies,
usually attempt to evaluate the design-
er’s process of CT towards the practice
of some of the well-known visual pro-
gramming tools for designers. Though,
the workflow behind these program-
ming tools could be very problematic
for clearly addressing the designer’s
cognitive actions in CT. According to
Aish & Hanna’s (2017) study, working
with Grasshopper, Dynamo, and Gen-

erative Components software for visu-
al programming requires dealing with
different forms of representation, and
eventually, abstraction barriers and
convoluted workflows would appear in
the work process. Also, for an inexperi-
enced user, the learning process of the
specified tools and adapting to their
user interface would take significant
time. Hence, considering the handi-
caps of using such programming tools
for the research objective, the experi-
ment was carried out in a traditional
CAD modeling framework.

 To provide a convenient user in-
terface for the subjects from different
backgrounds, and determine the con-
tent of the modeling tasks, a series of
pilot studies with architecture students
were held before the experiments. In
these studies, several well-known pro-
grams for traditional CAD modeling
were tried out by sophomore archi-
tecture students, including AutoCAD,
SketchUp, 3DsMax. The content of the
modeling tasks was refined in terms of
graphic representation and task objec-
tives. Regarding the outcomes from the
pilot studies, the experiment setup was
conducted. For that, AutoCAD was
chosen as a CAD modeling platform
with several adjustments in the user in-
terface; and two solid object modeling
tasks were defined within certain com-
mand limitations and repetitive ac-
tions. While the content of the first task
was determined to compare the archi-
tecture students among themselves, the
second task was determined to com-
pare these students with non-designer
subjects. The content of the modeling
tasks for both experiments was given
in [Figure 2].

As seen in [Figure 2], the given
shapes were created with the repetitive
use of specific commands’ move, copy,
3D/2Dmirror, and delete’ on the giv-
en geometric modules. Furthermore,
these geometric modules were cho-
sen symmetrical and close enough to
toy blocks to be simply generated by
the allowed commands, but angular
enough to offer surprises and allow for
a variety of spatial relationships. While
in the first experiment, three design-
er subjects were given a 3D model-
ing task by generating modules using
<3Dmirror> and <copy> commands;

Figure 2. The content of the modeling tasks for both
experiments.

ITU A|Z • Vol 17 No 2 • July 2020 • E.B. Öksüz, G. Çağdaş

204

in the second experiment, along with
three non-designers, the same subjects
were given a 2D modeling task by gen-
erating modules using <mirror> and
<copy> commands; in the same CAD
modeling framework. The subjects
were expected to think about and per-
form computational operations with
the allowed commands and modules
to accomplish their tasks.

It was preferred that all design stu-
dents complete the tasks with self-reg-
ulated training strategies. Thus, before
the experiments, all subjects were
given an opportunity to familiarize
themselves with the customized Auto-
CAD interface and the task materials.
They were given enough time to prac-
tice with the tools, commands, and
modules. It was noteworthy that even
non-designers did not find familiar-
izing themselves with the commands
and tools troubling. All participants
completed the practice phase thor-
oughly. However, with the comparison
of the time spent on the tasks and the
accuracy of the subjects’ set of opera-
tions during the tasks, it was found that
the designers were remarkably better
than the non-designers [Figure 3].

For the systematic analyses of the
subjects’ cognitive actions, their in-
terface interactions were recorded to
be encoded by using Tobii ProLab 30-
day Trial Software. The content of the
data collected from the experiments
includes video-screen recordings, eye
movements, command history scripts
of the subjects’ modeling processes.
Following the completion of all the ex-
periments, the assessment method was
used on the subjects’ analyzed data.

3.4. Assessment method

The offered assessment method for
the subject’s procedural abstraction
skill was adapted from Dr.Scratch. In a
nutshell, Dr.Scratch is a web tool that
analyzes and scores the content of the
Scratch projects. It grades the Scratch
users’ programming skills in terms
of abstraction, parallelization, logical
thinking, synchronization, flow con-
trol, user interactivity, and data rep-
resentation concepts. For the assess-
ment of the abstraction skill, this tool
analyzes the repeating block patterns
in the Scratch user’s code and scores

Figure 3. Still images from a non-designer’s use of AutoCAD
interface.

Figure 4. Different abstractions of ‘draw a line problem’ codes
that were made with Scratch, a block-based programming
tool (Abstraction, Dr. Scratch, 2019).

Figure 5. The categorization of the subjects’ interface
interactions.

An assessment method for a designerly way of computational thinking

205

it down if it finds any unnecessary re-
peats [Figure 4].

Similar to Dr.Scratch’s method, the
subjects’ repetitive actions in their
modeling processes were taken into
account for the assessment of their ab-
straction skills. By tracking down the
subjects’ interface interactions and
identifying their selection of modules
and commands to make a model, it
was aimed to extract the hidden ab-
straction patterns from their modeling
processes.

3.4.1. Defining coding scheme

After synchronous analysis of the
collected data, a coding scheme for the
subjects’ interactions with the com-
mands and modules, and the segmenta-
tion method towards that were defined
in order. For the systematic analysis of
the subjects’ modeling processes, the
content of their interface interactions
was identified and color-coded under
three categories [Figure 5]. Then, the
segment chunks were created based on
the similarities in these color-coded in-
teractions.

As a first step, within the synchro-
nous analysis of the video-screen
recordings and command history
scripts, the interactions of the subjects
were divided into ‘major’ and ‘minor’

moves. This intervention was held to
differentiate the major interactions of
the modeling process from the minor
ones. While the major moves address
the actions that are taken to generate
a new shape from an existing shape,
minor moves address any other actions
between two major moves.

As a second step, the major moves
of the subjects were identified by their
command-shape affiliations. For that,

- the selected command for the
shape generation,

- the selected shape to be generated,
and

- the generated shapes were taken
into account [Figure 6].

In order to identify the shapes and
commands for that, the eye move-
ments of the participants on the select-
ed shape and command history scripts
were used.

For the final step, these major moves
were divided based on their compound
interactions. If the generated shape
held for any reverse action, it was con-
sidered as a denied move, or else it was
accepted.

3.4.2. Determining segment values

The segment values of the subjects’
modeling processes were determined
from the final position of their col-
or-coded interactions. And, determin-
ing the unnecessarily repeating moves
of the subjects by their content has re-
vealed the hidden abstraction patterns
in their modeling process. As seen in
[Figure 7], the major moves of the sub-
jects were turned into segment chunks
based on their content.

For the comparison of subjects’ use
of abstraction skills, these segment
chunks were compared to their major
moves. Yet, this comparison would re-
veal their strengths and weaknesses of
making abstractions at different levels.

Figure 6. The coding scheme for the subjects’ interface
interactions.

Figure 7. The segment values of the subjects’ interface interactions.

ITU A|Z • Vol 17 No 2 • July 2020 • E.B. Öksüz, G. Çağdaş

206

4. Process analysis and results
The process analysis of each experi-

ment offers a fruitful discussion on the
designer’s use of abstraction in visual
computing and reflects their tenden-
cies of making abstraction at different
levels. While the first experiment re-
vealed that making abstractions at dif-
ferent levels are inevitable parts of the
visual computing process, the second
experiment showed the intricate rela-
tionship between the different levels
of abstraction partakes a significant
impact in CT. Within this regard, the
findings of the experiment analyses
can be discussed under two terms.

4.1. Levels of abstraction in visual
computing

In the first experiment, all architec-
ture students (S1, S2, and S3) devel-
oped different strategies to complete
their 3D modeling tasks. While S1 and
S2 started the process by analyzing the
assembly rules in the given shape, S3
directly started the process by assem-
bling the modules. Compared to oth-
ers, the subject completed the task with
more moves, at the latest [Figure 8].

However, as the number of moves
and task completion time of the sub-
jects was compared among themselves,
S3’s performance of interface interac-
tion was slightly better than S2.

The comparison of the segment
values in [Figure 8] shows that the
performance of S3 was rather weak as
compared to the others. By looking at
S3’s modeling process, it can be said
that their fixation on a single module
increased his number of moves and ex-
tended the task completion time. And
the reason behind this kind of fixation
might be related to the subject’s tenden-
cy to make a conceptual abstraction.
Instead of focusing on the function of
the commands and tools, S3’s fixation
on a single module refrained him from
making abstractions at a procedural
level. Also, the same fixation problem
for S3 was seen in their 2D modeling
task.

4.2. Designer’s level of expertise on
the use of abstraction skill in visual
computing

Different than the first experiment,
the second experiment was presented

in more detail to compare the sub-
jects’ use of abstraction skills. In this
experiment, the performances of the
architecture students were significantly
better than the non-designers. For the
comparison of the subjects’ abstraction
skills’ the subjects’ task completion
time, number of moves, and segment
values are given in the [Table 1].

By looking at the differences in the
subjects’ segment chunks, it can be
said that no correlation has been found
between the subject’s level of design
expertise and their use of abstraction
skills. Even though S2 completed the
task in the shortest time, S1 was the
fastest subject in terms of interface
interactions. As S2’s performance is
compared in terms of task completion
time and the segment values, her per-
formance was remarkably better than
the other participants.

[Table 2] shows the different assem-

Table 1. Task completion time, number of
moves, and segment values of the subjects
for the second experiment.

Table 2. Shapes that are generated with the allowed
commands in the second experiment.

Figure 8. Comparison of the segment values in the first
experiment.

An assessment method for a designerly way of computational thinking

207

blies of the modules in the second ex-
periment that were generated and used
by the subjects. By looking at their
number of occurrences in the major
moves, it can be said that the non-de-
signers had become fixated with sin-
gle modules more than the designers
had. On the other hand, the creation
of unique shapes can be seen in both
groups.

5. Conclusion and future remark

Similar to how the use of comput-
ers in design defined the early research
frameworks of design cognition, the
use of computational thinking as a
mental tool is now ready to challenge
traditional notions of design cogni-
tion. Dealing with computational tech-
nologies requires to have CT as a skill,
which also means to affiliate its cogni-
tive features in the correct forms. For a
visual thinker, this can be achieved by
developing a better understanding of
these features and their counterparts
through a set of practices in different
levels and forms of abstraction. Once
these perceptual tasks are built on basic
skills, it will be easier to acquire them
at higher levels (Ware, 2008; p: 172).

By considering a designer as a vi-
sual thinker, this study shed light on
a designer’s use of abstraction in CT.
It revealed that the designers tend to
make abstractions at different levels
in a CAD modeling framework, and
the abstraction skill at different levels
dominantly partakes in the process
of visual computing. The assessment
of subjects’ cognitive processes has
shown that the ability to make abstrac-
tions at a procedural level affects the
process of CT. Regarding the subjects’
performances in the CAD modeling
tasks, it can be said that the better use
of CT relies heavily on finding a bal-
ance between the different levels of
abstraction, or in other words, making
generalizations towards them. And a
proper evaluation of a visual thinker’s
abstraction skill relies on determining
their tendencies to make procedural
and conceptual abstractions. Because,
whether it is for a scientific or per-
ceptual task, making abstractions al-
ways require making generalizations.
As Arnheim exemplifies (2004), “true
generalization is the way by which a

scientist perfects his concepts and the
artist his images. It is an eminently
unmechanical procedure.” For a visual
thinker, making generalizations is not
a matter of collecting a random or an
infinite number of instances; in many
ways, it is a matter of finding patterns.

In the future, the assessment meth-
od in the research is planned to be de-
veloped into an educational tool for
visual thinkers. This type of assessment
would provide constructive feedback
about the students’ use of CT and re-
flect their use of abstraction, pattern
recognition, decomposition, and algo-
rithmic thinking skills. For educators,
who are looking for better ways of in-
tegrating computational technologies
into the early years of design education
or strengthen their educational efforts,
this type of educational tool can be
quite fruitful. With this tool, the learn-
ing experiences of students can be cus-
tomiz ed by digging deeper into their
cognitive strengths and weaknesses.

References
Aish, R., & Hanna, S. (2017).

Comparative evaluation of paramet-
ric design systems for teaching de-
sign computation. Design Studies, 52,
144–172. https://doi.org/10.1016/j.de-
stud.2017.05.002

Arnheim, R. (2004). Art and visual
perception: A psychology of the creative
eye, fiftieth anniversary printing (Rev.
ed.). Berkeley and Los Angeles.

Blackwell, A. F. (2002, June). What is
programming?. In PPIG (p. 20).

Denning, P. J. (2017). Remain-
ing trouble spots with computa-
tional thinking. Communications of
the ACM, 60(6), 33–39. https://doi.
org/10.1145/2998438

Dror, I. (2011). Brain friendly tech-
nology: What is it? And why do we
need it?. eLearn, 2011(8), 4.

Dr.Scratch, (n.d.). Abstraction. Re-
trieved November 15, 2019, from
http://www.drscratch.org/learn/Ab-
straction/

Erhan, H. I., Youssef, B. B., & Berry,
B. (2012). Teaching Spatial Thinking in
Design Computation Contexts: Chal-
lenges and Opportunities. In Compu-
tational Design Methods and Technol-
ogies: Applications in CAD, CAM and
CAE Education (pp. 365-389). IGI

ITU A|Z • Vol 17 No 2 • July 2020 • E.B. Öksüz, G. Çağdaş

208

Global.
Goldschmidt, G. (2011). Avoiding

design fixation: transformation and
abstraction in mapping from source to
target. The Journal of Creative Behavior,
45(2), 92–100.

Guzdial, M. (2008). Education Pav-
ing the way for computational think-
ing. Commun. ACM, 51(8), 25. https://
doi.org/10.1145/1378704.1378713

Guzdial, M. (2010). Does contex-
tualized computing education help?.
ACM Inroads, 1(4), 4-6.

Lawson, B. (2006). How designers
think. Routledge.

Locke, J. (1979). An Essay Concern-
ing Human Understanding, ed. P. Nid-
ditch (1975). Oxford: Clarendon Press.

National Research Council. (2010).
Report of a workshop on the scope and
nature of computational thinking. Na-
tional Academies Press.

Schön, D. A. (1987). Jossey-Bass
higher education series. Educating the
reflective practitioner: Toward a new
design for teaching and learning in the
professions. Jossey-Bass.

Sengupta, P., Kinnebrew, J. S., Basu,
S., Biswas, G., & Clark, D. (2013). In-
tegrating computational thinking with
K-12 science education using agent-

based computation : A theoretical
framework. Education and Information
Technologies, 18(2), 351–380.

Senske, N. (2014). Digital minds,
materials, and ethics: linking com-
putational thinking and digital craft.
Proceedings of the 19th International
Conference on ComputerAided Ar-
chitectural Design Research in Asia
CAADRIA, 841–850.

Ware, C. (2008). Visual Thinking:
for Design (Morgan Kaufmann Series
in Interactive Technologies).

Weisberg, R. W., & Reeves, L. M.
(2013). Cognition: from memory to cre-
ativity. John Wiley & Sons.

Wing, J. M. (2017). Computational
thinking’s influence on research and
education for all Influenza del pen-
siero computazionale nella ricerca e
nell’educazione per tutti. Italian Jour-
nal of Educational Technology, 25(2), ,
7–14. https://doi.org/10.17471/2499-
4324/922

Wing, J. M. (2008). Computational
thinking and thinking about comput-
ing. Philosophical Transactions of the
Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1881),
3717–3725. https://doi.org/10.1098/
rsta.2008.0118

