
GAN as a generative architectural
plan layout tool: A case study for
training DCGAN with Palladian
Plans and evaluation of DCGAN
outputs

Abstract
This study aims to produce Andrea Palladio’s architectural plan schemes au-

tonomously with generative adversarial networks(GAN), and to evaluate the plan
drawing productions of GAN as a generative plan layout tool. GAN is a class of
deep neural nets which is a generative model. In deep learning models, repetitive
processes can be automated. Architectural drawing is a repetitive process in the
act of architecture and plan drawing process can be made automated. For the
automation of plan production system we used deep convolutional generative ad-
versarial network (DCGAN) which is a subset of GAN models. And we evaluated
the outputs of the DCGAN Palladian Plan scheme productions. Results show that
not geometric similarities (shapes), but probabilistic models are at the centre of
the generative system of GAN. For this reason, it should be kept in mind that
while GAN algorithms are used as a generative system, they will produce statis-
tically close visual models rather than geometrically close models. Nonetheless,
GAN can generate both statistically and geometrically close models to the dataset.
In first section we introduced a brief description about the place of the drawing
in architecture field and future foresight of architecture drawings. In the second
section, we gave detailed information about the literature on autonomous plan
drawing systems. In the following sections, we explained the methodology of this
study and the process of creating the plan drawing dataset, the algorithm training
procedure, at the end we evaluated the generated plan schemes with rapid scene
categorization and Frechet inception score.

Keywords
Andrea Palladio, Artificial Intelligence (AI), GAN, Plan generator, Generative
system.

Can UZUN1, Meryem Birgül ÇOLAKOĞLU2, Arda İNCEOĞLU3

1 uzunc@itu.edu.tr • Architectural Design Computing, Graduate School of
Science Engineering and Technology, Istanbul Technical University, Istanbul,
Turkey
2 colakoglumer@itu.edu.tr • Department of Architecture, Faculty of Architecture,
Istanbul Technical University, Istanbul, Turkey
3 inceoglua@itu.edu.tr • Computer Engineering, Graduate School of Science
Engineering and Technology, Istanbul Technical University, Istanbul, Turkey

Received: October 2019 • Final Acceptance: February 2020

do
i:

10
.5

50
5/

itu
jfa

.2
02

0.
54

03
7

ITU A|Z • Vol 17 No 2 • July 2020 • 185-198

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

186

1. Introduction
Architectural drawing is the most

repetitive process in the discipline of
architecture. During the 2000s BC, a
Sumerian plan was sculpted in clay
(Donald, 1962). With this drawing,
we can say that architectural drawings
have a history of at least 4000 years.
Now, creating architectural drawings
manually could be defined as an ar-
chaic action. Architectural plans are a
subset of architectural drawings. Ar-
chitects draw plans based on spatial
organization decisions, such as the lo-
cation of the building, the size of the
space, the relation between the spac-
es, etc. Plan production is a repetitive
drawing process where spatial organi-
zation decisions are made.

An architect can draw an architec-
tural plan without thinking of any cog-
nitive aspects of the design. However,
behind the drawing action, a highly de-
tailed and sophisticated process is un-
folding in the mind. Formally describ-
ing these design processes in order to
train an algorithm would not be pos-
sible or efficient. This falls into the ar-
tificial intelligence (AI) problem space.
Goodfellow et al. (2016) states that the
real challenge for AI is being able to
solve tasks that people can do easily
but formally have difficulty explaining.
Human beings solve such problems in-
tuitively. It is quite difficult to formally
describe the act of designing in archi-
tecture, too. For autonomous drawing
processes, instead of trying to formally
explain the design, an algorithm can
derive meaningful solutions through
drawing datasets. Today, with the con-
cept of big data, algorithms can evalu-
ate data, and deep learning algorithms
can be trained without needing to for-
mally describe processes.

The repetitive process in the design-
ing and drawing of architectural plans
can be produced autonomously using
the GAN model, a deep learning al-
gorithm. As such, we aimed to evalu-
ate the GAN algorithm as a generative
plan design tool in architecture. As a
cased study, we focused on the auton-
omous generation of Andrea Palladio’s
villa plans with DCGAN, a subset of
the GAN algorithm. Studies on the au-
tonomous production of plan drawing

date back to the 1960s. Although the
methods used vary, we can see from
the literature that deep learning algo-
rithms are the most promising tools for
autonomous plan drawing as a genera-
tive design tool.

2. Studies on autonomous
architecture plan layout generators

Studies on the autonomous produc-
tion of plans in architectural design
started in the 1960s. Grason (1971)
stated that in the mid-60s, the linear
graph technique was an important in-
strument for the description of a plan.
In the 1970s, autonomous plan gener-
ation was realized by determining the
geometries to be used in the design
and the relationships of those geom-
etries. It was also possible to derive
plans using the shape grammar theory
that emerged in the 1970s. In addition,
genetic algorithms were tested in the
autonomous generation system of a
plan. There are also studies on the pro-
duction of plans using traditional ma-
chine learning techniques. Today, deep
learning algorithms have been used in
studies on the autonomous production
of plans.

Krejcirik (1969) developed his work
on the optimal placement of the plan
plane with computer-aided design.
Weinzapfel et al. (1971) defined spac-
es as geometric entities and used the
relationships between these geome-
tries as design constraints to produce
spatial arrangements in 3-dimensional
computer-aided design process. Levin
(1964) and Grason (1971) used graph
theory for spatial arrangement in plans.
Eastman (1973) proposed a system
called General Space Planner (GSP) for
autonomous spatial planning in two
dimensions. According to Eastman,
the goal in autonomous spatial plan-
ning software is not to completely re-
move the human from the design pro-
cess, but to automate non-creative and
repetitive processes in spatial planning.
Eastman identified four variables for
an autonomous space design system:
space, design units, relations between
design units, and operators to manip-
ulate these relations. Operators manip-
ulating the design are not well-defined.
Therein lies the potential for creativity

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

187

in the design process. Furthermore, the
relations between the design units are
defined as Boolean functions. Eastman
emphasized that the challenge in spa-
tial planning was to produce an infinite
number of orientation and positioning
possibilities for design units. Finally, he
emphasized that the problem of auton-
omous spatial planning is a problem of
the AI domain.

Stiny & Mitchell (1978) aimed to
organize Palladio’s plan grammar rules
into a modern and productive system.
Using the grammar of Palladio’s plan
system, the Villa Malcontenta plan was
produced (Stiny & Mitchell, 1978). In
this study, Stiny and Mitchell did not
produce an autonomous plan of Palla-
dio. However, they were able to create
the necessary algorithm for the auton-
omous generation of Palladian plans.
Koning & Eizenberg (1981) contrib-
uted the development of autonomous
processes in architectural design using
Frank Lloyd Wright’s cottage grammar
rules. Many authors (Duarte, 2005;
Colakoglu, 2005) used the productive
system of shape grammar to produce
architectural layouts.

Ahmad et al. (2004) used genetic al-
gorithms in their studies to use space
efficiently in plans. They minimized the
boundary line of the plan by searching
for the optimum solution with genet-
ic algorithms. Rojas and Torres (2006)
used genetic algorithms to design bank
office plans. Dalgicet al. (2017) stated
that the positioning of shelves within
a store is an important point for prod-
uct sales. Therefore, considering the
visibility problem of shelves in stores,
they designed a plan generator system
that works with genetic algorithms. As
a result of these studies, Dalgic et al.
(2017) stated that genetic algorithms
are a useful technique in creating a
plan to produce many possible design
proposals quickly and finding the op-
timum solution to a design problem.
Nagy et al. (2017) produced a 45-di-
mensional design problem space with
15 neighbourhood relationships and
three parameters to regulate these
neighbourhood relationships. Using
this problem space, they developed a
system that can find design solutions
using a productive system. The system

they produced works semi-autono-
mously, and the design is developed by
the designer’s orientation and selection
of the algorithm. The Multi-Objective
Genetic Algorithm (MOGA) is used in
the system developed for semi-autono-
mous design. Nagy et al. (2017) stated
that thanks to MOGA, instead of deal-
ing with a single problem in the design
problem space, the designer can deal
with multidimensional problems in a
large problem space and achieve opti-
mal results. This has the power to rad-
ically change the act of design. In this
way, problems that can be overlooked
in the design process can be solved.

The plan production software,
Finch, developed with the parametric
design tool, Grasshopper, can make
autonomous decisions about the spa-
tial arrangement, square meters, and
furnishing in plans. In this software, an
increase or decrease in the total square
meters of the plan redesigns the fur-
nishing and the spatial arrangement
autonomously (Ravenscroft, 2019).

Nowadays, the development of deep
learning technology is becoming estab-
lished in the field of autonomous plan
production systems. In their study,
Huang and Zheng (2018) were able
to design plans using GAN networks.
GANs are generative deep neural
networks. GAN networks are strong
enough to generate visual data. The
GAN system that Huang and Zheng
used was a specialized GAN network
called Pix2pixHD. This network can
derive visual information from labels.
For example, if the label is the kitchen
label, drawings of the kitchen plan are
generated on that label. In the dataset
used by Huang and Zheng, features
(furnishing, walls, and bearing sys-
tems) are produced autonomously on
plan drawings using the GAN network.
Chaillou’s (2019) work is another study
on plan generation with GAN net-
works. In this study, GAN networks
generate plans in three steps. In the
first step, the total shape of the plan
is generated. In the second step, GAN
produces interior partitioning and spa-
tial arrangement. The third step ends
with furnishing and plan production.
This study reveals the power of GAN
networks in autonomous plan gener-

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

188

ation. In Chaillou’ s work, the result-
ing plans are very clear, right down to
the details of the plan, the openings in
the walls and the spatial organization
(Chaillou, 2019)

3. Methodology

For the DCGAN training process,
we conducted two experiment using
two different datasets. The first dataset
contained original villa plans produced
by architect Andrea Palladio (16th cen-
tury). The second dataset was created
with Palladian plans generated using
Palladian grammar rules. The Palla-
dian grammar rule set for generating
plans is defined by Stiny & Mitchell
(1978).By referring to their bilateral
symmetry; Palladian plans can be eas-
ily evaluated. Due to their simple lay-
outs and reference for evaluation, these
villa plan drawings were used as cases
for testing DCGAN plan generation.

The purpose of the study was to ex-
amine the effectiveness of DCGAN
networks in the design process of Pal-
ladian plans as a generative plan design
tool. We evaluate the DCGAN outputs
using qualitative (rapid scene catego-
rization) and quantitative (Frechet In-
ception Distance) methods. For rapid
scene categorization, we used both Pal-
ladian grammar rules and space syntax
analysis.

4. Case study: GAN training with the
Palladian Villa Plan Dataset

The case study was carried out
through two experiments. The first
was DCGAN training with an original
Andrea Palladio villa plan set. The sec-
ond was DCGAN training with plans
produced according to Palladian gram-
mar rules. The first experiment outputs
were noisy and not clean enough to
evaluate the DCGAN outputs. There-
fore, we decided to repeat the training
with a cleaner dataset. In the second
training, Palladian grammar rules were
used to create a cleaner Palladian plan
dataset. For both DCGAN training ex-
periments, we used the same DCGAN
architecture and hyperparameters.

4.1. DCGAN architecture

This section explains the GAN algo-
rithm training using the Palladian villa
plans. In order to generate images, DC-

GAN, a subset of GAN algorithms, has
been proposed (Radford; 2015). The
following is a detailed description of
DCGAN architecture.

GAN (Goodfellow (2016)) is spe-
cial type of network that learns the
distribution of the input datax~pdata
and generates new samplesx~pmodel
from learned distribution. The overall
network is composed of two sub-net-
works, namely generator (g) and dis-
criminator (d) networks. The generator
takes a random noise vectorz~p, where
pis a Gaussian or Uniform distribu-
tion, as an input and generates a new
samplex=g(z; θg). The discriminator
takes both real and fake (i.e. generated)
data as input and returns a probability
valuep= d(x; θd), indicating whether x
is a real or fake sample.θg and θd are
learnable parameters of the generator
and discriminator networks, respec-
tively. There is competition between
these two networks. While the genera-
tive network tries to generate a sample
such that the discriminator can no lon-
ger identify whether it is a fake or real
sample, the discriminator gets better at
discriminating between real and gen-
erated samples.

The objective is to find:

where:

DCGAN Architecture:
In DCGAN architecture, the gen-

erator and discriminator networks are
composed of convolutional layers. We
adopted a similar architecture (Fig-
ure 1) to that proposed by Radford et.
al(2015). The generator network con-
sists of three convolutional layers, each
with 128, 128 and 64 filters, respec-
tively. There are batch normalization
layers and Leaky ReLU (α=0.2) is used
as nonlinearity. The discriminator net-
work is composed of four convolution-
al blocks. In each block, the convolu-
tional layer is followed by Leaky ReLU

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

189

(α=0.2), dropout (p=0.25) and batch
normalization layers. The convolution-
al layers have 16, 32, 64 and 128 filters,
respectively.

Training Details:
We trained for 10,000 epochs with a

batch size of 32. We used Adam optimi-
sation with the following hyperparam-
eters: learning rate: 0.0002, beta1:0.5,
and beta2: 0.999. At the pre-process-
ing stage, all images were converted to
grayscale and resized. In order to stabi-
lize training, we applied label smooth-
ing (0.1 for real image labels and 0.9
for fake image labels).Different image
sizes were examined. Increasing the
image size from 128x128 to 256x256
pixels increased the resolution in terms
of detail in generated images. However,
the level of detail remained unchanged
when increasing the image size.

First experiment: GAN network
training with original Andrea
Palladio Villa Plans Dataset

Preparation of Dataset
We collected Andrea Palladio’s villa

plans for the dataset. During the data
collection process, we searched for Pal-
ladio’s villa plans in the library. We car-
ried out the data collection process by
scanning the plans in books about Pal-
ladio. In the scanned plans, we identi-
fied and removed repeated plans. We

found a total of 125 plans by scanning
eight books (Giaconi, G., Williams, K.,
& Palladio, A. (2003)., Foscari, A., Ca-
nal, B., & Façade, GT (2010). , Hem-
soll, D. (2016)., Boucher, B. (1998).,
Puppi, L. (1973)., Puppi, L., Codato, P.,
Palladio, A., & Venchierutti, M. (2005)
Rykwert, J., & Schezen, R. (1999).,
Wundram, M., Marton, P., & Pape, T.
(1993)). All 125 plans are shown in Fig-
ure 2. We scrubbed the plans of redun-
dant data (measurements, arrows, text,
etc.) with photoshop, so that only outer
walls, inner walls and stairs were left.
We converted the colours of the plan to
black and white, but the colour channel
of the plan images was based on RGB
values. In the algorithm training pro-
cess, we converted the colour channel
of the dataset from RGB to grayscale.

Since the dataset consists of 125
images, we thought that the dataset
may be insufficient. Primarily we used
Euclidean transformations (rotation,
translation, symmetry operations) to
increase the amount of data. After the
data augmentation process, we ob-
tained 1,000 images for the dataset. Af-
ter training the DCGAN model, we ob-
served that the training was not stable,
given the loss values of the generator
function. The unstable training process
was related to either the dataset or the
GAN model. However, we know that
the DCGAN model is a stable train-
ing model in GAN networks. So, we
focused on the dataset as the problem.
With the data augmentation methods
that we used, we may have generated
outlier data that confused the training
process. Therefore, we decided to use
only the original Palladian plan data
for the dataset.

Outputs of DCGAN
For the DCGAN training session,

we used the same architecture and hy-
perparameters described in the DC-
GAN Architecture section. For most
of the DCGAN plan productions, we
observed that DCGAN tried to gener-
ate bilateral symmetric plans (Figure
3). In addition, we saw staircases on
some generated samples. However, the
outputs of DCGAN were too noisy to
evaluate DCGAN’s plan generation.
The reason for noisy samples was the
fact that the original plan dataset was
not clean enough. So, we decided to

Figure 1. DCGAN Architecture.

Figure 2. Andrea Palladio Original Plan Schema Dataset
(125 Plan Schemas).

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

190

generate a new, clean Palladian plan
dataset. While creating the new data-
set, we used Palladian grammar.

Second experiment: DCGAN
training with plans derived using
Palladian grammar rules

In this experiment, we trained the
DCGAN model with a dataset pro-
duced using Palladian grammar rules.

Preparation of dataset
Stiny & Mitchell (1978) defined the

Palladian grammar rules for Palladian
villa plans. SWAP Architekten has de-
veloped a web-based shape grammar
interpreter (SGI) based on the rules of
Palladian grammar (Grasl, n.d.). This
web-based SGI Palladian grammar,
called GRAPE, can generate Palladian
plans. For the second experiment, we
generated the Palladian plan dataset
using the GRAPE software.

The plan generation process takes
place through the definition of a series
of rules. The rules were:

- Create a grid from square units
(3x3, 3x4, 3x5, 5x3, 3x7 grids, with 30
plans for each)

- Define the walls for the plan
- Decide which square units in the

grid to merge with which square units,
according to Palladian grammar rules
(combining the square units in the grid
to generate T, I and + forms on the grid,
joining the square units in the grid on
the east-west and north-south axes)

-Loggia addition
-Portico addition
-Door and window voids defined on

the east-west and north-south axes
150 Palladian plans were generated

using the web-based GRAPE SGI in
accordance with the Palladian gram-
mar rules defined above (Figure 4).

Outputs of DCGAN
For this experiment, we used the

same architecture and hyperparame-
ters described in the DCGAN Archi-
tecture section. In addition to the same
DCGAN architecture, label smoothing
was used in this experiment. We ob-
served that label smoothing decreased
the loss value of the generator and cre-
ated a more robust training process.
The values of the generator and dis-
criminator loss functions during the
training process are shown in Figure
5. With label smoothing we obtained
lower loss values for the generator

function.
In the first epochs of the training

session, the algorithm did not learn
very well and could not generalize
through the Palladian plan. However,
after the 600th epoch, DCGAN start-
ed generating reasonable plans (Figure
6). At the end of the training sessions,
we decided that the quality of the pro-
ductions and loss value of the gener-
ator was good enough for the evalu-
ation of the DCGAN Palladian plan
generation process. Thus, we ended the
training process at the 10000th epoc.

Figure 3. GAN Plan Scheme Production Result with Original
Palladio Plan Dataset.

Figure 4. The Dataset that is generated with Palladian
Grammar Interpreter, GRAPE-SGI (150 Plan Schemas).

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

191

5. Evaluation of DCGAN production
in the second experiment

In this section, we evaluate the
outputs of the DCGAN. The GAN al-
gorithm has no standard evaluation
technique, but there are many differ-
ent techniques which can be used to
evaluate the performance of GAN al-
gorithms. GAN evaluation techniques
are divided into two groups: qualitative
and quantitative methods. In this pa-
per we used both methods to under-
stand the behaviour of GAN.

Qualitative methods of GAN evalu-
ation include nearest neighbours, rapid

scene categorization, rating and prefer-
ence judgment, evaluating mode drop
and mode collapse, investigating and
visualization of internals of network
(Borji, 2019).

Beside qualitative methods, there
are many quantitative methods that
measure the efficiency of GAN algo-
rithm productions. These include av-
erage log-likelihood, coverage metrics,
inception score (IS), Frechet Inception
Score (FIS), mode score, and Frechet
Inception Distance (FID). Some of
these techniques measure the resolu-
tion quality of the image generated by
GAN, while others look for similarity
between the training dataset and the
outputs of GAN through statistical cal-
culations.

For the qualitative evaluation meth-
od, we used rapid scene categorization;
for the quantitative evaluation method,
we used FID.

5.1. Evaluation through rapid scene
categorization

We compared the DCGAN outputs
with the dataset used to train the DC-
GAN model. We made comparisons
on the basis of the Palladian grammar
rules and space syntax values. As a re-
sult of this comparison, we evaluated
how effectively the GAN network gen-
erated Palladian plans.

Rapid scene categorization is a visu-
al examination method based on hu-
man perception (Borji, 2019). Through
this evaluation, the observer classifies
the true and false outputs of GAN.
Since a human is the observer in the
evaluation, this evaluation technique
can be considered subjective and intu-
itive. GAN generates thousands of vi-
suals. As such, the observer must work
quickly yet still be careful while check-
ing the visual outputs. Because of the
large amount of visuals to be evaluated,
some misclassification might occur in
terms of true or false decisions. Thus,
the reliability of this technique is vari-
able. Nonetheless, rapid scene catego-
rization is fast and useful in measuring
the performance of GAN.

For rapid scene categorization, we
used the Palladian grammar rules to
be precise while labelling the outputs
‘DCGAN(true)’ or ‘DCGAN(false)’.
Palladian grammar rule checking is

Figure 5. Loss Values of DCGAN with LabelSmoothing (0.1
for real image labels and 0.9 for fake image labels).

Figure 6. GAN Plan Scheme Production Result with GRAPE
SGI Palladio Plan Scheme Dataset.

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

192

based on the ‘y axis’ symmetry rule,
grid merging decisions and portico
generation rules. Among the samples
generated by DCGAN, we found that
very few of the samples did not have a
portico.

As merely visual inspection is not
reliable enough for evaluation, we an-
alysed the true and false samples using
space syntax analysis. Although space
syntax gives quantitative result, this
method also can be included in the
rapid scene categorization since it still
examines the shapes but without pro-
viding any statistical comparison result
between the training dataset and DC-
GAN-generated samples.

Palladian grammar rule
categorization

GRAPE SGI software can derive a
Palladian plan in a semi-autonomous
manner according to the Palladian
grammar rules. According to Stiny and
Mitchell (1978), the prominent feature
in Palladian plans is bilateral symme-
try. In most of Palladio’s villa plan di-
agrams, bilateral symmetry appears.
There is always a portico as well.

The Palladio Grammar rule starts
with a grid decision. The grids de-
signed by Palladio are mostly in 5x3
arrangements. In Palladian grammar,
the grid begins with a unit square.
This grid is augmented according to
the grammatical rules from the east,
west, north and south directions. The
grid augmentation process is per-
formed under bilateral symmetry. If a
unit grid square is added to the east,
another grid unit must be added to
the west. This rule is not sought in the
north-south direction. After the grid
is completed, the Palladian rule gener-

ates spaces with these grid units. In the
middle axis of the grid, the grid squares
merge to form I, T, or + shapes on the
plan. The grid can merge through the
north-south direction but must obey
the bilateral rule. A portico is created
on the axis of bilateral symmetry and
the entrance axis of the villa is defined.
The door and window openings are de-
fined on the north-south and east-west
axes in accordance with bilateral sym-
metry. At the end of the grammar rule
application process, the entrance door
is created on the axis of bilateral sym-
metry on the portico wall.

Figure 7 shows the 25 GRAPE-SGI
generated Palladian plans within the
training dataset, 25 DCGAN generat-
ed plans which are in accordance with
Palladian grammar rules by Stiny &
Mitchell (1978) and 25 DCGAN gener-
ated plans which are not in accordance
with Palladian grammar rules.

When we examined the DCGAN
production, the majority of DC-
GAN-generated plans were not in
accordance with bilateral symmetry.
Among the 2,525 plans generated by
DCGAN, we saw that only 63 plans
complied with Palladian grammar
(bilateral symmetry), and DCGAN
generated the majority of the plans
with a 7x3 grid layout. We trained the
DCGAN with a dataset that included
the same number of 3x3, 3x4, 3x5, 5x3
and 7x3 grid layouts, but we observed
that DCGAN generated only 7x3 grid
layouts. The main reason for the dom-
inance of 7x3 layouts may be related
to the probability distribution of the
pixels in the dataset. This means that
while training the DCGAN with dif-
ferent grid layouts, DCGAN learned

Figure 7. 25 Palladian Plan Schemes that is generated with Palladian SGI & 50 Palladian Plan Schemes
that is generated with DCGAN(left=true, right=false).

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

193

and accepted the 7x3 layout as a true
probability.

In Figure 8, we selected one plan
per group among GRAPE SGI, DC-
GAN(true) and DCGAN(false) plan
generation results. We carried out re-
verse engineering to obtain each of the
plans with Palladian grammar rules
(Stiny & Mitchell, 1978) from scratch.
In this way, we aimed to check the true
and false outputs of DCGAN in terms
of Palladian grammar rules. For the
GRAPE SGI(5,a) and DCGAN(true)(5,a)
plans, we were able to obtain the same
plans. However, DCGAN(false(5,a)
could only be derived with different
rule sets not included in Palladian
grammar rules.

In Figure 8, each of the three plans
have the same 7x3 grid layout, so we
applied the Palladian grammar rule to
obtain a 7x3 grid layout. While gen-
erating our dataset we used the same
steps in GRAPE SGI plan(5,a). The rules
that we applied were: a 7x3 grid, east-
west axes grid merging, north-south
axes grid merging, T-shape grid merg-
ing (this shape can be either “T”, “I” or
“+” shape as mentioned in the Prepa-
ration of Dataset section), creation of
window and door openings, and final-
ly addition of a portico. For the true
output, we labelled the output as DC-
GAN(true)(5,a) and for this output, we
were able to apply the same list of Pal-
ladian grammar rules as in the GRAPE
SGI, with one exception. Instead of
using the T-shape merging , here we

used l-shape merging on the north-
south middle axis. For the false outputs
of DCGAN, we labelled the outputs as
DCGAN(false(5,a).The rules applied for
obtaining the DCGAN(false)(5,a) plan
were not in accordance with Palladian
grammar rules. The DCGAN(false)(5,a)
plan does not have bilateral symmetry.
The reason for this problem was that
the grids were merged asymmetrically.
In the Palladian grammar rule set there
is no L-shape grid merging as it would
spoil the bilateral symmetry. However,
in the DCGAN(false)(5,a) plan, we were
able to derive this plan by applying the
L-shape merging rule.

By inspecting all the 2,525 plans
generated by DCGAN using this
methodology (Palladian grammar
rules), we classified 63 of 2,525 plans
as DCGAN(true), and the other 2,462
samples as DCGAN(false). Whether
the plan was in compliance with the
grammar rule, all the plans generated
by DCGAN had the portico in front of
the bilateral symmetry axis. The reason
for this must be related to the dataset.
All the data within the dataset had a
portico and they are all the same. So
DCGAN generated the same pixel val-
ues in the correct places.

From all these results we can deduce
that DCGAN does not read the gram-
mar rules, but it reads the probability
distribution of the pixel values in the
dataset. Plans generated in accordance
with the Palladian grammar rules are
just a subset of probability distribu-

Figure 8. Grammar Rules of one plan scheme per groups in Figure 7; GRAPE
SGI(5,a), DCGAN(TRUE)(5,a) & DCGAN(FALSE)(5,a).

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

194

tion of the pixel values in the dataset.
Thus, we observed some true Palladian
grammar rule plans, but we also ob-
served many other possibilities which
are not in accordance with the Palladi-
an grammar rules.

Space syntax categorization
In the previous section we evaluat-

ed DCGAN generation using Palladi-
an grammar rules with the rapid scene
categorization technique. We classified
the outputs as DCGAN(true) and DC-
GAN(false) subjectively, even though
we used the grammar rules as a basis.
That means we may have misinterpret-
ed or missed out some features in the
outputs. Although rapid scene cate-
gorization is a qualitative method and
space syntax is a quantitative method,
with the help of space syntax we were
able to categorize the outputs not sub-
jectively but objectively. As such, we
incorporated the space syntax method
into rapid scene categorization. In this
way, we were able to evaluate the out-
puts more precisely than we did with
Palladian grammar rules.

In this section, we compare the
GRAPE SGI Palladian plans, DC-
GAN(true) and DCGAN(false) Palla-
dian plans according to space syntax
values. Space syntax is mostly used
in urban analysis studies. However, it
can also be used for analysis of spatial
arrangement, visibility, space privacy,
and integration of spaces on the ar-
chitectural scale. Space syntax can be
used to calculate the relationships be-
tween spaces within a system (Hillier
& Stonor, 2010). In this study, we used
the connectivity values of space syntax
to evaluate the plans. Connectivity in-
dicates how many spaces are connected
to another space. There is a direct pro-
portion between connectivity and in-
tegration values. A connectivity value
gives the measures of the distances be-
tween all subspaces in a space and then
it compares and calculates the farthest
and the closest subspace to each sub-
space in the space. The resulting values
for connectivity are represented by a
heatmap, with red indicating the most
integrated space, while blue defines the
most isolated space. Furthermore, this
value gives information about the cir-
culation on the layout of the spaces.

We selected 25 GRAPE SGI-gener-

ated plans, 25 DCGAN(true) plans and
25 DCGAN(false) plans. The select-
ed plans are the same as in the Rapid
Scene Categorization: Palladian Gram-
mar Rules section. Figure 9 shows the
visualization of the connectivity val-
ues of each of the GRAPE SGI, DC-
GAN(true) and DCGAN(false) Palla-
dian plans.

When we examined the connectiv-
ity values of the GRAPE SGI-gener-
ated 7x3 layout grid plan results, we
observed that the axis parallel to the
portico axes showed the largest con-
nectivity value since the grid layout
was 7x3. The corridor parallel to the
portico is formed by 7 grid units. So,
this corridor has more connection with
the other spaces in the plan than the
other spaces have. The second high-
est values were observed in the either
entrance hall or the halls near the east
and west walls of the plan. The lowest
connectivity values were detected just
east and west of the entrance hall. So
these spaces in the 7x3 grid system are
the deepest spaces in the plan.

The connectivity values of DC-
GAN(true) were almost the same as
the GRAPE SGI results. However, the
DCGAN(false) connectivity values
were not the same, but similar to the
GRAPE SGI results. This shows that
whether the plan is DCGAN(true)
or DCGAN(false), the space syntax
values did not change significantly.
The reason for this must be related to
the grid rule (7x3) and similar door
openings between spaces in both DC-
GAN(true) and DCGAN(false). Pixel
probability distribution in the dataset
may correlate with the space syntax
values. So, although the DCGAN pro-
ductions are not in accordance with
Palladian grammar rules, the syntax
values can still be similar to the syntax
values of the dataset. In other words,
DCGAN learned the structure of the
Palladian plans through probability
distribution. So, DCGAN(true) out-
puts are 100% accurate both in terms
of Palladian grammar rules and space
syntax values, and DCGAN(false) re-
sults are 100% false in terms of Palla-
dian grammar rules but not 100% false
in terms of space syntax values. We can
deduce that DCGAN created almost
similar data to the dataset.

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

195

5.2. Evaluation through the Frechet
Inception Distance (FID)

In section 5.1 we evaluated the DC-
GAN outputs using the rapid scene
categorization technique, which is a
qualitative technique. In this section
we use FID as a quantitative method to
measure the performance of DCGAN.
Since there is not a single and exact
method to evaluate the performance of
GAN algorithms, we used both qual-
itative and quantitative methods to
understand the behaviour of DCGAN
better.

With FID, we can calculate the dis-
tributions of embedding for images in
the dataset and images generated by
DCGAN. Embeddings are the vector
representation of the variables in the
data (Koehrsen, 2018). FID compares
the distances between these vector
representations. For FID calculation
a special network, the Inception V3
network, was used. The distance was
calculated using the Gaussian distribu-
tions of the data from the dataset and
the data from DCGAN-generated im-
ages (Borji, 2019). The following func-
tion from Borji (2019) shows the FID

score equation.
Features of real and generated data

are defined with values mu1 and mu2,
respectively, while C1 and C2 denote
the covariance matrix for real and gen-
erated data (Brownlee, 2019). Covari-
ance shows the relation between two
variables of two different dataset. If the
FID score is low, this means the dataset
and the outputs are similar, but if the
FID score is high it means generated
outputs are different from the dataset.

By using this equation, we calcu-

lated the FID scores between the 150
images from the dataset and each of
the150 outputs generated by DCGAN
between 0th-600th, 2500th-3100th,
5000th-5600th, 7500th-8100thand
9400th-10000th epochs. Figure 10
shows the FID scores.

According to Figure 10, DCGAN
improved in learning the Palladian
plan dataset per iteration. The FID
scores decrease per iteration, and DC-
GAN generated more similar results to
the dataset. However, after around the
3000th epoch, the FID score did not
change significantly, but minor chang-
es were observable. From the outputs
of DCGAN, we can see that the reso-
lutions of the images improved per it-
eration, but the structure of the images
did not change significantly after the
3000th epoch. If the DCGAN overfits,
the FID score would be around 0. Thus,
the FID not being 0 is a good thing.
Comparison between the first epoch
and the 3000th epoch shows that DC-
GAN learned the structure of Palladi-
an plan dataset, so the FID score de-
creased dramatically until the 3000th
epoch. Although most of the outputs
of DCGAN were not in accordance
with Palladian grammar rules, the FID
scores show that DCGAN learned the
probability distribution of pixel val-
ues on the plans and generated almost
mathematically correct Palladian plan
results.

6. Results and conclusion

In this study, we aimed to evaluate
the effectiveness and the performance
of the GAN algorithm as a generative
system in architectural plan drawing.
We choose Palladian plans as a case
study for the GAN evaluation process.
For the training sessions, we used DC-
GAN, a subset of GAN algorithms. We

Figure 9. Connectivity Values, Syntax Results of 25 Palladian Plan Schemes that is generated with
GRAPE SGI & Syntax Results of 50 Palladian Plan Schemes (True & False) that is generated with
DCGAN.

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

196

used the default hyperparameters in
DCGAN. We performed two exper-
iments with the DCGAN algorithm.
In the first experiment, we used 125
original Palladio villa plans to train the
DCGAN algorithm. DCGAN results
were noisy because the dataset was not
sufficiently clean. For this reason, we
derived 150 Palladian plans using Pal-
ladian grammar with GRAPE SGI soft-
ware. These plans constituted the sec-
ond dataset to be used in the training
of DCGAN. We used the label smooth-
ing method to optimize the DCGAN
generator function’s loss value. Before
label smoothing, the value of the loss
function of the generator function was
high. After label smoothing, the loss
value of the generator function de-
creased below 1. The training process
was more stable with label smoothing.
We evaluated both the datasets and
found that the first dataset, which in-
cluded 125 original Palladian plans,
was too heterogeneous. Because of
the heterogeneous dataset, during the
training process of DCGAN, a high
variance low bias problem occurred
and the outputs of the DCGAN failed
in producing reasonable results. The
GRAPE SGI-generated dataset was
homogenous so the training process
of DCGAN was more stable using this
dataset, and the results were of a better
quality. We continued the evaluation
process of DCGAN with the GRAPE
SGI-generated dataset. We terminated
the training process of the algorithm at
the10000th epoch, since the loss value
was sufficiently low. DCGAN generat-
ed 2525 Palladian plans with a 7x3 grid
layout.

After the training process, we evalu-
ated the generated plans to understand
the performance and the effectiveness
of DCGAN as a generative plan lay-
out production tool. The first intuitive
evaluation was that DCGAN somehow
focused on the generation of 7x3 grid
layout plans. The reason for this consti-
tuted an engineering research problem,
so we simply evaluated these plans. We
used three different evaluation meth-
ods. Two of the methods fall under the
rapid scene categorization technique, a
qualitative evaluation method of GAN
outputs. These two methods were: cat-
egorization through Palladian gram-

mar rules, and categorization through
space syntax analysis. The third eval-
uation technique was a quantitative
method: Frechet Inception Distance.
FID is a method for calculating the
probability distribution distance be-
tween the real and generated plans. So
FID score gives a probabilistic result.

When we look at the results of Palla-
dian grammar rule rapid scene catego-
rization, only 63 plans out of 2525 gen-
erated plans were in accordance with
the Palladian grammar rule. We clas-
sified these 63 plans as DCGAN(true).
The others were labelled DCGAN(-
false). These results show that DC-
GAN is not sufficiently effective for the
training of Palladian grammar rules.
To confirm these results, we conduct-
ed space syntax analysis, another rapid
scene categorization. When we com-
pared the Palladian grammar rules
with the space syntax values, we saw
similar syntax values to the dataset.

Upon evaluation of the FID results,
we found that DCGAN improved at
imitating the dataset, despite the fact
they did not comply Palladian gram-
mar rules. This means that almost cor-
rect results were generated by DCGAN
mathematically, but does not mean that
DCGAN can read the grammar rules.
The reason for the DCGAN(true) gen-
erations may be that the results com-
patible with Palladian grammar rules
were a subset of the probability distri-
bution of the pixel values of each item
of data in the dataset.

After the evaluation of the DCGAN

Figure 10. FID Score Comparison.

GAN as a generative architectural plan layout tool: A case study for training DCGAN with
Palladian Plans and evaluation of DCGAN outputs

197

plan outputs, we can say that GAN al-
gorithms can take part in generative
systems in architecture for plan pro-
duction. Dinçer et al. (2014) classified
the generative design tools under five
headings. These generative design tools
are listed as shape grammars, genetic
algorithms, L-Systems, cellular autom-
ata, and collective intelligence-swarm
behaviour. We can add the GAN algo-
rithms to this list as the sixth generative
design tool. Not geometric similarities
(shapes), but probabilistic models are
at the centre of the generative system of
GAN. For this reason, it should be kept
in mind that while GAN algorithms
are used as a generative system, they
will produce statistically close visual
models rather than geometrically close
models. Nonetheless, GAN can gener-
ate both statistically and geometrically
close models to the dataset. Therefore,
GAN algorithms can take part in the
class of generative design tools for plan
generation.

References
Ahmad, A. R., Basir, O. A., Hassa-

nein, K., & Imam, M. H. (2004). Im-
proved placement algorithm for layout
optimization. In Proc. of the 2nd Int’l
Industrial Engineering Conf.(IIEC’04).

Boucher, B. (1998). Andrea Palla-
dio: the architect in his time. Abbeville
Press.

Borji, A. (2019). Pros and cons of
GANevaluation measures. Computer
Vision and Image Understanding, 179,
41-65.

Brownlee, J. (2019, October 10).
How to Implement the Frechet Inception
Distance (FID) for Evaluating GANs.
Retrieved December 5, 2019, from
https://machinelearningmastery.com/
how-to-implement-the-frechet-incep-
tion-distance-fid-from-scratch/

Brock, A., Donahue, J., & Simonyan,
K. (2018). Large scale gan training for
high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096.

Chaillou, S. (2019). AI & Archi-
tecture. Retrieved from https://to-
wardsdatascience.com/ai-architec-
ture-f9d78c6958e0

Colakoglu, B. (2005). Design by
grammar: an interpretation and gen-
eration of vernacular hayat houses in
contemporary context. Environment

and Planning B: Planning and Design,
32(1), 141-149.

Dalgic, H. O., Bostanci, E., & Guzel,
M. S. (2017). Genetic Algorithm Based
Floor Planning System. arXiv preprint
arXiv:1704.06016.

Dinçer, A. E., Çağdaş, G., & Tong, H.
(2014). Toplu Konutların Ön Tasarımı
İçin Üretken Bir Bilgisayar Modeli.
Megaron, 9(2).

Donald, T. (1962). A Sumerian Plan
in The John Rylands Library1. Journal
of Semitic Studies, 7(2), 184-190.

Duarte, J. P. (2005). A discur-
sive grammar for customizing mass
housing: the case of Siza’s houses at
Malagueira. Automation in Construc-
tion, 14(2), 265-275.

Eastman, C. M. (1973). Automated
space planning. Artificial intelligence,
4(1), 41-64.

Foscari, A., Canal, B., & Façade, G.
T. (2010). Andrea Palladio. Unbuilt
Venice. Baden: Lars Muller Publishers.

Generative adversarial network.
(2019). Retrieved from https://en.wiki-
pedia.org/wiki/Generative_adversari-
al_network

Giaconi, G., Williams, K., & Palla-
dio, A. (2003). The Villas of Palladio.
Princeton Architectural.

Goodfellow, I., Bengio, Y., & Cour-
ville, A. (2016). Deep learning. MIT
press.

Grasl, T. (n.d.). GRAPE For Web -
Shape grammar interpreter. Retrieved
from http://grape.swap-zt.com/App/
PalladianGrammar

Grason, J. (1971, June). An approach
to computerized space planning using
graph theory. In Proceedings of the
8th Design automation workshop (pp.
170-178). ACM.

Hemsoll, D. (2016). Palladian De-
sign: The Good, the Bad and the Unex-
pected.

Hillier, B., & Stonor, T. (2010). Space
Syntax-Strategic Urban Design. City
Planning Review, The City Planning In-
stitute of Japan, 59(3), 285.

Huang, W., & Zheng, H. (2018). Ar-
chitectural drawings recognition and
generation through machine learning.
In Proceedings of the 38th Annu-
al Conference of the Association for
Computer Aided Design in Architec-
ture, Mexico City, Mexico.

Koehrsen, W. (2018, October 2).

ITU A|Z • Vol 17 No 2 • July 2020 • C. Uzun, M.B. Çolakoğlu, A. İnceoğlu

198

Neural Network Embeddings Ex-
plained. Retrieved January 9, 2020,
from https://towardsdatascience.com/
neural-network-embeddings-ex-
plained-4d028e6f0526

Koning, H., & Eizenberg, J. (1981).
The language of the prairie: Frank
Lloyd Wright’s prairie houses. Environ-
ment and planning B:planning and de-
sign, 8(3), 295-323.

Krejcirik, M. (1969). Computer-aid-
ed plant layout. Computer-Aided De-
sign, 2(1), 7-19.

Levin, P. H. (1964). Use of graphs to
decide the optimum layout of build-
ings. The Architects’ Journal, 7, 809-815.

Nagy, D., Lau, D., Locke, J., Stoddart,
J., Villaggi, L., Wang, R., ... & Benjamin,
D. (2017, May). Project Discover: An
application of generative design for ar-
chitectural space planning. In Proceed-
ings of the Symposium on Simulation
for Architecture and Urban Design (p.
7). Society for Computer Simulation
International.

Puppi, L. (1973). Andrea Palladio
(Vol. 2). Milano: Electa.

Puppi, L., Codato, P., Palladio, A., &
Venchierutti, M. (2005). Andrea Palla-
dio: introduzione alle architetture e al
pensiero teorico. Arsenale.

Radford, A., Metz, L., & Chintala,

S. (2015). Unsupervised representation
learning with deep convolutional gener-
ative adversarial networks. arXiv pre-
print arXiv:1511.06434.

Ravenscroft, T. (2019). Wallgren
Arkitekter and BOX Bygg create para-
metric tool that generates adaptive
plans. Retrieved from https://www.de-
zeen.com/2019/06/27/adaptive-floor-
plans-wallgren-arkitekter-box-bygg-
parametric-tool/

Rojas, G. S., & Torres, J. F. (2006).
Genetic algorithms for designing bank
offices layouts. In Prosiding Third In-
ternational Conference on Production
Research–Americas’ Region.

Rykwert, J., & Schezen, R. (1999).
The palladian ideal. New York: Rizzoli.

Stiny, G., & Mitchell, W. J. (1978).
The palladian grammar. Environment
and planning B: Planning and design,
5(1), 5-18.

Weinzapfel, G., Johnson, T. E., &
Perkins, J. (1971, June). IMAGE: an in-
teractive computer system for multi-con-
strained spatial synthesis. In Proceed-
ings of the 8th Design Automation
Workshop (pp. 101-108). ACM.

Wundram, M., Marton, P., & Pape,
T. (1993). Andrea Palladio 1508-1580:
Architect between the renaissance and
baroque. Taschen.

