
GAN as a generative architectural 
plan layout tool: A case study for 
training DCGAN with Palladian 
Plans and evaluation of DCGAN 
outputs

Abstract
This study aims to produce Andrea Palladio’s architectural plan schemes au-

tonomously with generative adversarial networks(GAN), and to evaluate the plan 
drawing productions of GAN as a generative plan layout tool. GAN is a class of 
deep neural nets which is a generative model. In deep learning models, repetitive 
processes can be automated. Architectural drawing is a repetitive process in the 
act of architecture and plan drawing process can be made automated. For the 
automation of plan production system we used deep convolutional generative ad-
versarial network (DCGAN) which is a subset of GAN models. And we evaluated 
the outputs of the DCGAN Palladian Plan scheme productions. Results show that 
not geometric similarities (shapes), but probabilistic models are at the centre of 
the generative system of GAN. For this reason, it should be kept in mind that 
while GAN algorithms are used as a generative system, they will produce statis-
tically close visual models rather than geometrically close models. Nonetheless, 
GAN can generate both statistically and geometrically close models to the dataset. 
In first section we introduced a brief description about the place of the drawing 
in architecture field and future foresight of architecture drawings. In the second 
section, we gave detailed information about the literature on autonomous plan 
drawing systems. In the following sections, we explained the methodology of this 
study and the process of creating the plan drawing dataset, the algorithm training 
procedure, at the end we evaluated the generated plan schemes with rapid scene 
categorization and Frechet inception score.
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1. Introduction
Architectural drawing is the most 

repetitive process in the discipline of 
architecture. During the 2000s BC, a 
Sumerian plan was sculpted in clay 
(Donald, 1962). With this drawing, 
we can say that architectural drawings 
have a history of at least 4000 years. 
Now, creating architectural drawings 
manually could be defined as an ar-
chaic action. Architectural plans are a 
subset of architectural drawings. Ar-
chitects draw plans based on spatial 
organization decisions, such as the lo-
cation of the building, the size of the 
space, the relation between the spac-
es, etc. Plan production is a repetitive 
drawing process where spatial organi-
zation decisions are made.

An architect can draw an architec-
tural plan without thinking of any cog-
nitive aspects of the design. However, 
behind the drawing action, a highly de-
tailed and sophisticated process is un-
folding in the mind. Formally describ-
ing these design processes in order to 
train an algorithm would not be pos-
sible or efficient. This falls into the ar-
tificial intelligence (AI) problem space. 
Goodfellow et al. (2016) states that the 
real challenge for AI is being able to 
solve tasks that people can do easily 
but formally have difficulty explaining. 
Human beings solve such problems in-
tuitively. It is quite difficult to formally 
describe the act of designing in archi-
tecture, too. For autonomous drawing 
processes, instead of trying to formally 
explain the design, an algorithm can 
derive meaningful solutions through 
drawing datasets. Today, with the con-
cept of big data, algorithms can evalu-
ate data, and deep learning algorithms 
can be trained without needing to for-
mally describe processes.

The repetitive process in the design-
ing and drawing of architectural plans 
can be produced autonomously using 
the GAN model, a deep learning al-
gorithm. As such, we aimed to evalu-
ate the GAN algorithm as a generative 
plan design tool in architecture. As a 
cased study, we focused on the auton-
omous generation of Andrea Palladio’s 
villa plans with DCGAN, a subset of 
the GAN algorithm. Studies on the au-
tonomous production of plan drawing 

date back to the 1960s. Although the 
methods used vary, we can see from 
the literature that deep learning algo-
rithms are the most promising tools for 
autonomous plan drawing as a genera-
tive design tool.

 
2. Studies on autonomous  
architecture plan layout generators 

Studies on the autonomous produc-
tion of plans in architectural design 
started in the 1960s. Grason (1971) 
stated that in the mid-60s, the linear 
graph technique was an important in-
strument for the description of a plan. 
In the 1970s, autonomous plan gener-
ation was realized by determining the 
geometries to be used in the design 
and the relationships of those geom-
etries. It was also possible to derive 
plans using the shape grammar theory 
that emerged in the 1970s. In addition, 
genetic algorithms were tested in the 
autonomous generation system of a 
plan. There are also studies on the pro-
duction of plans using traditional ma-
chine learning techniques. Today, deep 
learning algorithms have been used in 
studies on the autonomous production 
of plans.

Krejcirik (1969) developed his work 
on the optimal placement of the plan 
plane with computer-aided design. 
Weinzapfel et al. (1971) defined spac-
es as geometric entities and used the 
relationships between these geome-
tries as design constraints to produce 
spatial arrangements in 3-dimensional 
computer-aided design process. Levin 
(1964) and Grason (1971) used graph 
theory for spatial arrangement in plans. 
Eastman (1973) proposed a system 
called General Space Planner (GSP) for 
autonomous spatial planning in two 
dimensions. According to Eastman, 
the goal in autonomous spatial plan-
ning software is not to completely re-
move the human from the design pro-
cess, but to automate non-creative and 
repetitive processes in spatial planning. 
Eastman identified four variables for 
an autonomous space design system: 
space, design units, relations between 
design units, and operators to manip-
ulate these relations. Operators manip-
ulating the design are not well-defined. 
Therein lies the potential for creativity 
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in the design process. Furthermore, the 
relations between the design units are 
defined as Boolean functions. Eastman 
emphasized that the challenge in spa-
tial planning was to produce an infinite 
number of orientation and positioning 
possibilities for design units. Finally, he 
emphasized that the problem of auton-
omous spatial planning is a problem of 
the AI domain.

Stiny & Mitchell (1978) aimed to 
organize Palladio’s plan grammar rules 
into a modern and productive system. 
Using the grammar of Palladio’s plan 
system, the Villa Malcontenta plan was 
produced (Stiny & Mitchell, 1978). In 
this study, Stiny and Mitchell did not 
produce an autonomous plan of Palla-
dio. However, they were able to create 
the necessary algorithm for the auton-
omous generation of Palladian plans. 
Koning & Eizenberg (1981) contrib-
uted the development of autonomous 
processes in architectural design using 
Frank Lloyd Wright’s cottage grammar 
rules. Many authors (Duarte, 2005; 
Colakoglu, 2005) used the productive 
system of shape grammar to produce 
architectural layouts.

Ahmad et al. (2004) used genetic al-
gorithms in their studies to use space 
efficiently in plans. They minimized the 
boundary line of the plan by searching 
for the optimum solution with genet-
ic algorithms. Rojas and Torres (2006) 
used genetic algorithms to design bank 
office plans. Dalgicet al. (2017) stated 
that the positioning of shelves within 
a store is an important point for prod-
uct sales. Therefore, considering the 
visibility problem of shelves in stores, 
they designed a plan generator system 
that works with genetic algorithms. As 
a result of these studies, Dalgic et al. 
(2017) stated that genetic algorithms 
are a useful technique in creating a 
plan to produce many possible design 
proposals quickly and finding the op-
timum solution to a design problem. 
Nagy et al. (2017) produced a 45-di-
mensional design problem space with 
15 neighbourhood relationships and 
three parameters to regulate these 
neighbourhood relationships. Using 
this problem space, they developed a 
system that can find design solutions 
using a productive system. The system 

they produced works semi-autono-
mously, and the design is developed by 
the designer’s orientation and selection 
of the algorithm. The Multi-Objective 
Genetic Algorithm (MOGA) is used in 
the system developed for semi-autono-
mous design. Nagy et al. (2017) stated 
that thanks to MOGA, instead of deal-
ing with a single problem in the design 
problem space, the designer can deal 
with multidimensional problems in a 
large problem space and achieve opti-
mal results. This has the power to rad-
ically change the act of design. In this 
way, problems that can be overlooked 
in the design process can be solved.

The plan production software, 
Finch, developed with the parametric 
design tool, Grasshopper, can make 
autonomous decisions about the spa-
tial arrangement, square meters, and 
furnishing in plans. In this software, an 
increase or decrease in the total square 
meters of the plan redesigns the fur-
nishing and the spatial arrangement 
autonomously (Ravenscroft, 2019).

Nowadays, the development of deep 
learning technology is becoming estab-
lished in the field of autonomous plan 
production systems. In their study, 
Huang and Zheng (2018) were able 
to design plans using GAN networks. 
GANs are generative deep neural 
networks. GAN networks are strong 
enough to generate visual data. The 
GAN system that Huang and Zheng 
used was a specialized GAN network 
called Pix2pixHD. This network can 
derive visual information from labels. 
For example, if the label is the kitchen 
label, drawings of the kitchen plan are 
generated on that label. In the dataset 
used by Huang and Zheng, features 
(furnishing, walls, and bearing sys-
tems) are produced autonomously on 
plan drawings using the GAN network. 
Chaillou’s (2019) work is another study 
on plan generation with GAN net-
works. In this study, GAN networks 
generate plans in three steps. In the 
first step, the total shape of the plan 
is generated. In the second step, GAN 
produces interior partitioning and spa-
tial arrangement. The third step ends 
with furnishing and plan production. 
This study reveals the power of GAN 
networks in autonomous plan gener-
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ation. In Chaillou’ s work, the result-
ing plans are very clear, right down to 
the details of the plan, the openings in 
the walls and the spatial organization 
(Chaillou, 2019)

 
3. Methodology 

For the DCGAN training process, 
we conducted two experiment using 
two different datasets. The first dataset 
contained original villa plans produced 
by architect Andrea Palladio (16th cen-
tury). The second dataset was created 
with Palladian plans generated using 
Palladian grammar rules. The Palla-
dian grammar rule set for generating 
plans is defined by Stiny & Mitchell 
(1978).By referring to their bilateral 
symmetry; Palladian plans can be eas-
ily evaluated. Due to their simple lay-
outs and reference for evaluation, these 
villa plan drawings were used as cases 
for testing DCGAN plan generation.

The purpose of the study was to ex-
amine the effectiveness of DCGAN 
networks in the design process of Pal-
ladian plans as a generative plan design 
tool. We evaluate the DCGAN outputs 
using qualitative (rapid scene catego-
rization) and quantitative (Frechet In-
ception Distance) methods. For rapid 
scene categorization, we used both Pal-
ladian grammar rules and space syntax 
analysis.

 
4. Case study: GAN training with the 
Palladian Villa Plan Dataset

The case study was carried out 
through two experiments. The first 
was DCGAN training with an original 
Andrea Palladio villa plan set. The sec-
ond was DCGAN training with plans 
produced according to Palladian gram-
mar rules. The first experiment outputs 
were noisy and not clean enough to 
evaluate the DCGAN outputs. There-
fore, we decided to repeat the training 
with a cleaner dataset. In the second 
training, Palladian grammar rules were 
used to create a cleaner Palladian plan 
dataset. For both DCGAN training ex-
periments, we used the same DCGAN 
architecture and hyperparameters.

 
4.1. DCGAN architecture

This section explains the GAN algo-
rithm training using the Palladian villa 
plans. In order to generate images, DC-

GAN, a subset of GAN algorithms, has 
been proposed (Radford; 2015). The 
following is a detailed description of 
DCGAN architecture.

GAN (Goodfellow (2016)) is spe-
cial type of network that learns the 
distribution of the input datax~pdata 
and generates new samplesx~pmodel 
from learned distribution. The overall 
network is composed of two sub-net-
works, namely generator (g) and dis-
criminator (d) networks. The generator 
takes a random noise vectorz~p, where 
pis a Gaussian or Uniform distribu-
tion, as an input and generates a new 
samplex=g(z; θg). The discriminator 
takes both real and fake (i.e. generated) 
data as input and returns a probability 
valuep= d(x; θd), indicating whether x 
is a real or fake sample.θg  and θd are 
learnable parameters of the generator 
and discriminator networks, respec-
tively. There is competition between 
these two networks. While the genera-
tive network tries to generate a sample 
such that the discriminator can no lon-
ger identify whether it is a fake or real 
sample, the discriminator gets better at 
discriminating between real and gen-
erated samples.

The objective is to find:

where:

DCGAN Architecture:
In DCGAN architecture, the gen-

erator and discriminator networks are 
composed of convolutional layers. We 
adopted a similar architecture (Fig-
ure 1) to that proposed by Radford et. 
al(2015). The generator network con-
sists of three convolutional layers, each 
with 128, 128 and 64 filters, respec-
tively. There are batch normalization 
layers and Leaky ReLU (α=0.2) is used 
as nonlinearity. The discriminator net-
work is composed of four convolution-
al blocks. In each block, the convolu-
tional layer is followed by Leaky ReLU 
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(α=0.2), dropout (p=0.25) and batch 
normalization layers. The convolution-
al layers have 16, 32, 64 and 128 filters, 
respectively.

Training Details:
We trained for 10,000 epochs with a 

batch size of 32. We used Adam optimi-
sation with the following hyperparam-
eters: learning rate: 0.0002, beta1:0.5, 
and beta2: 0.999. At the pre-process-
ing stage, all images were converted to 
grayscale and resized. In order to stabi-
lize training, we applied label smooth-
ing (0.1 for real image labels and 0.9 
for fake image labels).Different image 
sizes were examined. Increasing the 
image size from 128x128 to 256x256 
pixels increased the resolution in terms 
of detail in generated images. However, 
the level of detail remained unchanged 
when increasing the image size.

First experiment: GAN network 
training with original Andrea  
Palladio Villa Plans Dataset

Preparation of Dataset
We collected Andrea Palladio’s villa 

plans for the dataset. During the data 
collection process, we searched for Pal-
ladio’s villa plans in the library. We car-
ried out the data collection process by 
scanning the plans in books about Pal-
ladio. In the scanned plans, we identi-
fied and removed repeated plans. We 

found a total of 125 plans by scanning 
eight books (Giaconi, G., Williams, K., 
& Palladio, A. (2003)., Foscari, A., Ca-
nal, B., & Façade, GT (2010). , Hem-
soll, D. (2016)., Boucher, B. (1998)., 
Puppi, L. (1973)., Puppi, L., Codato, P., 
Palladio, A., & Venchierutti, M. (2005) 
Rykwert, J., & Schezen, R. (1999)., 
Wundram, M., Marton, P., & Pape, T. 
(1993)). All 125 plans are shown in Fig-
ure 2. We scrubbed the plans of redun-
dant data (measurements, arrows, text, 
etc.) with photoshop, so that only outer 
walls, inner walls and stairs were left. 
We converted the colours of the plan to 
black and white, but the colour channel 
of the plan images was based on RGB 
values. In the algorithm training pro-
cess, we converted the colour channel 
of the dataset from RGB to grayscale.

Since the dataset consists of 125 
images, we thought that the dataset 
may be insufficient. Primarily we used 
Euclidean transformations (rotation, 
translation, symmetry operations) to 
increase the amount of data. After the 
data augmentation process, we ob-
tained 1,000 images for the dataset. Af-
ter training the DCGAN model, we ob-
served that the training was not stable, 
given the loss values of the generator 
function. The unstable training process 
was related to either the dataset or the 
GAN model. However, we know that 
the DCGAN model is a stable train-
ing model in GAN networks. So, we 
focused on the dataset as the problem. 
With the data augmentation methods 
that we used, we may have generated 
outlier data that confused the training 
process. Therefore, we decided to use 
only the original Palladian plan data 
for the dataset.

Outputs of DCGAN
For the DCGAN training session, 

we used the same architecture and hy-
perparameters described in the DC-
GAN Architecture section. For most 
of the DCGAN plan productions, we 
observed that DCGAN tried to gener-
ate bilateral symmetric plans (Figure 
3). In addition, we saw staircases on 
some generated samples. However, the 
outputs of DCGAN were too noisy to 
evaluate DCGAN’s plan generation. 
The reason for noisy samples was the 
fact that the original plan dataset was 
not clean enough. So, we decided to 

Figure 1. DCGAN Architecture.

Figure 2. Andrea Palladio Original Plan Schema Dataset 
(125 Plan Schemas).
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generate a new, clean Palladian plan 
dataset. While creating the new data-
set, we used Palladian grammar.

Second experiment: DCGAN 
training with plans derived using 
Palladian grammar rules

In this experiment, we trained the 
DCGAN model with a dataset pro-
duced using Palladian grammar rules.

Preparation of dataset
Stiny & Mitchell (1978) defined the 

Palladian grammar rules for Palladian 
villa plans. SWAP Architekten has de-
veloped a web-based shape grammar 
interpreter (SGI) based on the rules of 
Palladian grammar (Grasl, n.d.). This 
web-based SGI Palladian grammar, 
called GRAPE, can generate Palladian 
plans. For the second experiment, we 
generated the Palladian plan dataset 
using the GRAPE software.

The plan generation process takes 
place through the definition of a series 
of rules. The rules were:

- Create a grid from square units 
(3x3, 3x4, 3x5, 5x3, 3x7 grids, with 30 
plans for each)

- Define the walls for the plan
- Decide which square units in the 

grid to merge with which square units, 
according to Palladian grammar rules 
(combining the square units in the grid 
to generate T, I and + forms on the grid, 
joining the square units in the grid on 
the east-west and north-south axes)

-Loggia addition
-Portico addition
-Door and window voids defined on 

the east-west and north-south axes
150 Palladian plans were generated 

using the web-based GRAPE SGI in 
accordance with the Palladian gram-
mar rules defined above (Figure 4).

Outputs of DCGAN
For this experiment, we used the 

same architecture and hyperparame-
ters described in the DCGAN Archi-
tecture section. In addition to the same 
DCGAN architecture, label smoothing 
was used in this experiment. We ob-
served that label smoothing decreased 
the loss value of the generator and cre-
ated a more robust training process. 
The values of the generator and dis-
criminator loss functions during the 
training process are shown in Figure 
5. With label smoothing we obtained 
lower loss values for the generator 

function.
In the first epochs of the training 

session, the algorithm did not learn 
very well and could not generalize 
through the Palladian plan. However, 
after the 600th epoch, DCGAN start-
ed generating reasonable plans (Figure 
6). At the end of the training sessions, 
we decided that the quality of the pro-
ductions and loss value of the gener-
ator was good enough for the evalu-
ation of the DCGAN Palladian plan 
generation process. Thus, we ended the 
training process at the 10000th epoc. 

Figure 3. GAN Plan Scheme Production Result with Original 
Palladio Plan Dataset.

Figure 4. The Dataset that is generated with Palladian 
Grammar Interpreter, GRAPE-SGI (150 Plan Schemas).
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5. Evaluation of DCGAN production 
in the second experiment

In this section, we evaluate the 
outputs of the DCGAN. The GAN al-
gorithm has no standard evaluation 
technique, but there are many differ-
ent techniques which can be used to 
evaluate the performance of GAN al-
gorithms. GAN evaluation techniques 
are divided into two groups: qualitative 
and quantitative methods. In this pa-
per we used both methods to under-
stand the behaviour of GAN.

Qualitative methods of GAN evalu-
ation include nearest neighbours, rapid 

scene categorization, rating and prefer-
ence judgment, evaluating mode drop 
and mode collapse, investigating and 
visualization of internals of network 
(Borji, 2019).

Beside qualitative methods, there 
are many quantitative methods that 
measure the efficiency of GAN algo-
rithm productions. These include av-
erage log-likelihood, coverage metrics, 
inception score (IS), Frechet Inception 
Score (FIS), mode score, and Frechet 
Inception Distance (FID). Some of 
these techniques measure the resolu-
tion quality of the image generated by 
GAN, while others look for similarity 
between the training dataset and the 
outputs of GAN through statistical cal-
culations.

For the qualitative evaluation meth-
od, we used rapid scene categorization; 
for the quantitative evaluation method, 
we used FID.

 
5.1. Evaluation through rapid scene 
categorization

We compared the DCGAN outputs 
with the dataset used to train the DC-
GAN model. We made comparisons 
on the basis of the Palladian grammar 
rules and space syntax values. As a re-
sult of this comparison, we evaluated 
how effectively the GAN network gen-
erated Palladian plans.

Rapid scene categorization is a visu-
al examination method based on hu-
man perception (Borji, 2019). Through 
this evaluation, the observer classifies 
the true and false outputs of GAN. 
Since a human is the observer in the 
evaluation, this evaluation technique 
can be considered subjective and intu-
itive. GAN generates thousands of vi-
suals. As such, the observer must work 
quickly yet still be careful while check-
ing the visual outputs. Because of the 
large amount of visuals to be evaluated, 
some misclassification might occur in 
terms of true or false decisions. Thus, 
the reliability of this technique is vari-
able. Nonetheless, rapid scene catego-
rization is fast and useful in measuring 
the performance of GAN.

For rapid scene categorization, we 
used the Palladian grammar rules to 
be precise while labelling the outputs 
‘DCGAN(true)’ or ‘DCGAN(false)’. 
Palladian grammar rule checking is 

Figure 5. Loss Values of  DCGAN with LabelSmoothing (0.1 
for real image labels and 0.9 for fake image labels).

Figure 6. GAN Plan Scheme Production Result with GRAPE 
SGI Palladio Plan Scheme Dataset.
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based on the ‘y axis’ symmetry rule, 
grid merging decisions and portico 
generation rules. Among the samples 
generated by DCGAN, we found that 
very few of the samples did not have a 
portico.

As merely visual inspection is not 
reliable enough for evaluation, we an-
alysed the true and false samples using 
space syntax analysis. Although space 
syntax gives quantitative result, this 
method also can be included in the 
rapid scene categorization since it still 
examines the shapes but without pro-
viding any statistical comparison result 
between the training dataset and DC-
GAN-generated samples.

Palladian grammar rule  
categorization 

GRAPE SGI software can derive a 
Palladian plan in a semi-autonomous 
manner according to the Palladian 
grammar rules. According to Stiny and 
Mitchell (1978), the prominent feature 
in Palladian plans is bilateral symme-
try. In most of Palladio’s villa plan di-
agrams, bilateral symmetry appears. 
There is always a portico as well.

The Palladio Grammar rule starts 
with a grid decision. The grids de-
signed by Palladio are mostly in 5x3 
arrangements. In Palladian grammar, 
the grid begins with a unit square. 
This grid is augmented according to 
the grammatical rules from the east, 
west, north and south directions. The 
grid augmentation process is per-
formed under bilateral symmetry. If a 
unit grid square is added to the east, 
another grid unit must be added to 
the west. This rule is not sought in the 
north-south direction. After the grid 
is completed, the Palladian rule gener-

ates spaces with these grid units. In the 
middle axis of the grid, the grid squares 
merge to form I, T, or + shapes on the 
plan. The grid can merge through the 
north-south direction but must obey 
the bilateral rule. A portico is created 
on the axis of bilateral symmetry and 
the entrance axis of the villa is defined. 
The door and window openings are de-
fined on the north-south and east-west 
axes in accordance with bilateral sym-
metry. At the end of the grammar rule 
application process, the entrance door 
is created on the axis of bilateral sym-
metry on the portico wall.

Figure 7 shows the 25 GRAPE-SGI 
generated Palladian plans within the 
training dataset, 25 DCGAN generat-
ed plans which are in accordance with 
Palladian grammar rules by Stiny & 
Mitchell (1978) and 25 DCGAN gener-
ated plans which are not in accordance 
with Palladian grammar rules.

When we examined the DCGAN 
production, the majority of DC-
GAN-generated plans were not in 
accordance with bilateral symmetry. 
Among the 2,525 plans generated by 
DCGAN, we saw that only 63 plans 
complied with Palladian grammar 
(bilateral symmetry), and DCGAN 
generated the majority of the plans 
with a 7x3 grid layout. We trained the 
DCGAN with a dataset that included 
the same number of 3x3, 3x4, 3x5, 5x3 
and 7x3 grid layouts, but we observed 
that DCGAN generated only 7x3 grid 
layouts. The main reason for the dom-
inance of 7x3 layouts may be related 
to the probability distribution of the 
pixels in the dataset. This means that 
while training the DCGAN with dif-
ferent grid layouts, DCGAN learned 

Figure 7. 25 Palladian Plan Schemes that is generated with Palladian SGI & 50 Palladian Plan Schemes 
that is generated with DCGAN(left=true, right=false).
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and accepted the 7x3 layout as a true 
probability.

In Figure 8, we selected one plan 
per group among GRAPE SGI, DC-
GAN(true) and DCGAN(false) plan 
generation results. We carried out re-
verse engineering to obtain each of the 
plans with Palladian grammar rules 
(Stiny & Mitchell, 1978) from scratch. 
In this way, we aimed to check the true 
and false outputs of DCGAN in terms 
of Palladian grammar rules. For the 
GRAPE SGI(5,a) and DCGAN(true)(5,a) 
plans, we were able to obtain the same 
plans. However, DCGAN(false(5,a) 
could only be derived with different 
rule sets not included in Palladian 
grammar rules.

In Figure 8, each of the three plans 
have the same 7x3 grid layout, so we 
applied the Palladian grammar rule to 
obtain a 7x3 grid layout. While gen-
erating our dataset we used the same 
steps in GRAPE SGI plan(5,a). The rules 
that we applied were: a 7x3 grid, east-
west axes grid merging, north-south 
axes grid merging, T-shape grid merg-
ing (this shape can be either “T”, “I” or 
“+” shape as mentioned in the Prepa-
ration of Dataset section), creation of 
window and door openings, and final-
ly addition of a portico. For the true 
output, we labelled the output as DC-
GAN(true)(5,a) and for this output, we 
were able to apply the same list of Pal-
ladian grammar rules as in the GRAPE 
SGI, with one exception. Instead of 
using the T-shape merging , here we 

used l-shape merging on the north-
south middle axis. For the false outputs 
of DCGAN, we labelled the outputs as 
DCGAN(false(5,a).The rules applied for 
obtaining the DCGAN(false)(5,a) plan 
were not in accordance with Palladian 
grammar rules. The DCGAN(false)(5,a) 
plan does not have bilateral symmetry. 
The reason for this problem was that 
the grids were merged asymmetrically. 
In the Palladian grammar rule set there 
is no L-shape grid merging as it would 
spoil the bilateral symmetry. However, 
in the DCGAN(false)(5,a) plan, we were 
able to derive this plan by applying the 
L-shape merging rule.

By inspecting all the 2,525 plans 
generated by DCGAN using this 
methodology (Palladian grammar 
rules), we classified 63 of 2,525 plans 
as DCGAN(true), and the other 2,462 
samples as DCGAN(false). Whether 
the plan was in compliance with the 
grammar rule, all the plans generated 
by DCGAN had the portico in front of 
the bilateral symmetry axis. The reason 
for this must be related to the dataset. 
All the data within the dataset had a 
portico and they are all the same. So 
DCGAN generated the same pixel val-
ues in the correct places.

From all these results we can deduce 
that DCGAN does not read the gram-
mar rules, but it reads the probability 
distribution of the pixel values in the 
dataset. Plans generated in accordance 
with the Palladian grammar rules are 
just a subset of probability distribu-

Figure 8. Grammar Rules of one plan scheme per groups in Figure 7; GRAPE 
SGI(5,a), DCGAN(TRUE)(5,a) & DCGAN(FALSE)(5,a).
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tion of the pixel values in the dataset. 
Thus, we observed some true Palladian 
grammar rule plans, but we also ob-
served many other possibilities which 
are not in accordance with the Palladi-
an grammar rules.

Space syntax categorization
In the previous section we evaluat-

ed DCGAN generation using Palladi-
an grammar rules with the rapid scene 
categorization technique. We classified 
the outputs as DCGAN(true) and DC-
GAN(false) subjectively, even though 
we used the grammar rules as a basis. 
That means we may have misinterpret-
ed or missed out some features in the 
outputs. Although rapid scene cate-
gorization is a qualitative method and 
space syntax is a quantitative method, 
with the help of space syntax we were 
able to categorize the outputs not sub-
jectively but objectively. As such, we 
incorporated the space syntax method 
into rapid scene categorization. In this 
way, we were able to evaluate the out-
puts more precisely than we did with 
Palladian grammar rules.

In this section, we compare the 
GRAPE SGI Palladian plans, DC-
GAN(true) and DCGAN(false) Palla-
dian plans according to space syntax 
values. Space syntax is mostly used 
in urban analysis studies. However, it 
can also be used for analysis of spatial 
arrangement, visibility, space privacy, 
and integration of spaces on the ar-
chitectural scale. Space syntax can be 
used to calculate the relationships be-
tween spaces within a system (Hillier 
& Stonor, 2010). In this study, we used 
the connectivity values of space syntax 
to evaluate the plans. Connectivity in-
dicates how many spaces are connected 
to another space. There is a direct pro-
portion between connectivity and in-
tegration values. A connectivity value 
gives the measures of the distances be-
tween all subspaces in a space and then 
it compares and calculates the farthest 
and the closest subspace to each sub-
space in the space. The resulting values 
for connectivity are represented by a 
heatmap, with red indicating the most 
integrated space, while blue defines the 
most isolated space. Furthermore, this 
value gives information about the cir-
culation on the layout of the spaces.

We selected 25 GRAPE SGI-gener-

ated plans, 25 DCGAN(true) plans and 
25 DCGAN(false) plans. The select-
ed plans are the same as in the Rapid 
Scene Categorization: Palladian Gram-
mar Rules section. Figure 9 shows the 
visualization of the connectivity val-
ues of each of the GRAPE SGI, DC-
GAN(true) and DCGAN(false) Palla-
dian plans.

When we examined the connectiv-
ity values of the GRAPE SGI-gener-
ated 7x3 layout grid plan results, we 
observed that the axis parallel to the 
portico axes showed the largest con-
nectivity value since the grid layout 
was 7x3. The corridor parallel to the 
portico is formed by 7 grid units. So, 
this corridor has more connection with 
the other spaces in the plan than the 
other spaces have. The second high-
est values were observed in the either 
entrance hall or the halls near the east 
and west walls of the plan. The lowest 
connectivity values were detected just 
east and west of the entrance hall. So 
these spaces in the 7x3 grid system are 
the deepest spaces in the plan.

The connectivity values of DC-
GAN(true) were almost the same as 
the GRAPE SGI results. However, the 
DCGAN(false) connectivity values 
were not the same, but similar to the 
GRAPE SGI results. This shows that 
whether the plan is DCGAN(true) 
or DCGAN(false), the space syntax 
values did not change significantly. 
The reason for this must be related to 
the grid rule (7x3) and similar door 
openings between spaces in both DC-
GAN(true) and DCGAN(false). Pixel 
probability distribution in the dataset 
may correlate with the space syntax 
values. So, although the DCGAN pro-
ductions are not in accordance with 
Palladian grammar rules, the syntax 
values can still be similar to the syntax 
values of the dataset. In other words, 
DCGAN learned the structure of the 
Palladian plans through probability 
distribution. So, DCGAN(true) out-
puts are 100% accurate both in terms 
of Palladian grammar rules and space 
syntax values, and DCGAN(false) re-
sults are 100% false in terms of Palla-
dian grammar rules but not 100% false 
in terms of space syntax values. We can 
deduce that DCGAN created almost 
similar data to the dataset.
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5.2. Evaluation through the Frechet 
Inception Distance (FID)

In section 5.1 we evaluated the DC-
GAN outputs using the rapid scene 
categorization technique, which is a 
qualitative technique. In this section 
we use FID as a quantitative method to 
measure the performance of DCGAN. 
Since there is not a single and exact 
method to evaluate the performance of 
GAN algorithms, we used both qual-
itative and quantitative methods to 
understand the behaviour of DCGAN 
better.

With FID, we can calculate the dis-
tributions of embedding for images in 
the dataset and images generated by 
DCGAN. Embeddings are the vector 
representation of the variables in the 
data (Koehrsen, 2018). FID compares 
the distances between these vector 
representations. For FID calculation 
a special network, the Inception V3 
network, was used. The distance was 
calculated using the Gaussian distribu-
tions of the data from the dataset and 
the data from DCGAN-generated im-
ages (Borji, 2019). The following func-
tion from Borji (2019) shows the FID 

score equation.
Features of real and generated data 

are defined with values mu1 and mu2, 
respectively, while C1 and C2 denote 
the covariance matrix for real and gen-
erated data (Brownlee, 2019). Covari-
ance shows the relation between two 
variables of two different dataset. If the 
FID score is low, this means the dataset 
and the outputs are similar, but if the 
FID score is high it means generated 
outputs are different from the dataset.

By using this equation, we calcu-

lated the FID scores between the 150 
images from the dataset and each of 
the150 outputs generated by DCGAN 
between 0th-600th, 2500th-3100th, 
5000th-5600th, 7500th-8100thand 
9400th-10000th epochs. Figure 10 
shows the FID scores.

According to Figure 10, DCGAN 
improved in learning the Palladian 
plan dataset per iteration. The FID 
scores decrease per iteration, and DC-
GAN generated more similar results to 
the dataset. However, after around the 
3000th epoch, the FID score did not 
change significantly, but minor chang-
es were observable. From the outputs 
of DCGAN, we can see that the reso-
lutions of the images improved per it-
eration, but the structure of the images 
did not change significantly after the 
3000th epoch. If the DCGAN overfits, 
the FID score would be around 0. Thus, 
the FID not being 0 is a good thing. 
Comparison between the first epoch 
and the 3000th epoch shows that DC-
GAN learned the structure of Palladi-
an plan dataset, so the FID score de-
creased dramatically until the 3000th 
epoch. Although most of the outputs 
of DCGAN were not in accordance 
with Palladian grammar rules, the FID 
scores show that DCGAN learned the 
probability distribution of pixel val-
ues on the plans and generated almost 
mathematically correct Palladian plan 
results.

 
6. Results and conclusion 

In this study, we aimed to evaluate 
the effectiveness and the performance 
of the GAN algorithm as a generative 
system in architectural plan drawing. 
We choose Palladian plans as a case 
study for the GAN evaluation process. 
For the training sessions, we used DC-
GAN, a subset of GAN algorithms. We 

Figure 9. Connectivity Values, Syntax Results of 25 Palladian Plan Schemes that is generated with 
GRAPE SGI & Syntax Results of 50 Palladian Plan Schemes (True & False) that is generated with 
DCGAN.
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used the default hyperparameters in 
DCGAN. We performed two exper-
iments with the DCGAN algorithm. 
In the first experiment, we used 125 
original Palladio villa plans to train the 
DCGAN algorithm. DCGAN results 
were noisy because the dataset was not 
sufficiently clean. For this reason, we 
derived 150 Palladian plans using Pal-
ladian grammar with GRAPE SGI soft-
ware. These plans constituted the sec-
ond dataset to be used in the training 
of DCGAN. We used the label smooth-
ing method to optimize the DCGAN 
generator function’s loss value. Before 
label smoothing, the value of the loss 
function of the generator function was 
high. After label smoothing, the loss 
value of the generator function de-
creased below 1. The training process 
was more stable with label smoothing. 
We evaluated both the datasets and 
found that the first dataset, which in-
cluded 125 original Palladian plans, 
was too heterogeneous. Because of 
the heterogeneous dataset, during the 
training process of DCGAN, a high 
variance low bias problem occurred 
and the outputs of the DCGAN failed 
in producing reasonable results. The 
GRAPE SGI-generated dataset was 
homogenous so the training process 
of DCGAN was more stable using this 
dataset, and the results were of a better 
quality. We continued the evaluation 
process of DCGAN with the GRAPE 
SGI-generated dataset. We terminated 
the training process of the algorithm at 
the10000th epoch, since the loss value 
was sufficiently low. DCGAN generat-
ed 2525 Palladian plans with a 7x3 grid 
layout.

After the training process, we evalu-
ated the generated plans to understand 
the performance and the effectiveness 
of DCGAN as a generative plan lay-
out production tool. The first intuitive 
evaluation was that DCGAN somehow 
focused on the generation of 7x3 grid 
layout plans. The reason for this consti-
tuted an engineering research problem, 
so we simply evaluated these plans. We 
used three different evaluation meth-
ods. Two of the methods fall under the 
rapid scene categorization technique, a 
qualitative evaluation method of GAN 
outputs. These two methods were: cat-
egorization through Palladian gram-

mar rules, and categorization through 
space syntax analysis. The third eval-
uation technique was a quantitative 
method: Frechet Inception Distance.
FID is a method for calculating the 
probability distribution distance be-
tween the real and generated plans. So 
FID score gives a probabilistic result. 

When we look at the results of Palla-
dian grammar rule rapid scene catego-
rization, only 63 plans out of 2525 gen-
erated plans were in accordance with 
the Palladian grammar rule. We clas-
sified these 63 plans as DCGAN(true). 
The others were labelled DCGAN(-
false). These results show that DC-
GAN is not sufficiently effective for the 
training of Palladian grammar rules. 
To confirm these results, we conduct-
ed space syntax analysis, another rapid 
scene categorization. When we com-
pared the Palladian grammar rules 
with the space syntax values, we saw 
similar syntax values to the dataset. 

Upon evaluation of the FID results, 
we found that DCGAN improved at 
imitating the dataset, despite the fact 
they did not comply Palladian gram-
mar rules. This means that almost cor-
rect results were generated by DCGAN 
mathematically, but does not mean that 
DCGAN can read the grammar rules. 
The reason for the DCGAN(true) gen-
erations may be that the results com-
patible with Palladian grammar rules 
were a subset of the probability distri-
bution of the pixel values of each item 
of data in the dataset.

After the evaluation of the DCGAN 

Figure 10. FID Score Comparison.
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plan outputs, we can say that GAN al-
gorithms can take part in generative 
systems in architecture for plan pro-
duction. Dinçer et al. (2014) classified 
the generative design tools under five 
headings. These generative design tools 
are listed as shape grammars, genetic 
algorithms, L-Systems, cellular autom-
ata, and collective intelligence-swarm 
behaviour. We can add the GAN algo-
rithms to this list as the sixth generative 
design tool. Not geometric similarities 
(shapes), but probabilistic models are 
at the centre of the generative system of 
GAN. For this reason, it should be kept 
in mind that while GAN algorithms 
are used as a generative system, they 
will produce statistically close visual 
models rather than geometrically close 
models. Nonetheless, GAN can gener-
ate both statistically and geometrically 
close models to the dataset. Therefore, 
GAN algorithms can take part in the 
class of generative design tools for plan 
generation.
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